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GENERALIZATION OF ASYMPTOTIC BIHAVIOR
OF NONAUTONOMOUS STOCHASTIC DIFFERENTIAL EQUATION

Background. The study of the asymptotic behavior of solutions of stochastic differential equations is one of the main
places in many sections of insurance and financial mathematics, economics, management theory since stochastic
differential equations, as an effective model of random process is the basis for the study of random phenomena.
Objective. In this paper we consider the almost sure asymptotic behavior of the solution of the nonautonomous
stochastic differential equation.

Methods. We proposed a method to study the y-asymptotic properties of a solution of a stochastic differential equa-
tion by comparison with a solution of an ordinary differential equations obtained by dropping the stochastic part. We
also use of the theory of pseudo-regularly varying functions.

Results. We investigate the asymptotic behavior of solutions stochastic differential equations and establish sufficient
conditions that provide different types of asymptotic behavior of a random process.

Conclusions. Stochastic models approximate the real processes much better than deterministic ones, however,
deterministic modelling has been preferred to stochastic one because of much greater ease of computability. The
presented result enabled comparing properties of solution a stochastic differential equation with a solution of an

ordinary differential equation.

Keywords: stochastic differential equation; Wiener process; asymptotic behavior.

Introduction

We study the problem of asymptotic behavior of
a random processes. One of the most effective mod-
els of random processes is a stochastic differential
equation, which arises in many problems in various
areas such as the radiophysics, sound navigation and
ranging, seismography, meteorology, evolution of bio-
logical populations, theory of signals and automatic
control, filtration, econometrics, financial mathemat-
ics, and so on. Adding a stochastic process is very ac-
tual due to the uncertainty about future system de-
velopment. Stochastic models approximate the real
processes much better than deterministic ones.

The almost sure (a.s.) asymptotic behavior of
solutions of one-dimensional autonomous stochastic
differential equation is considered in [1—6].

The same problem was later considered in [7—9]
for a more general stochastic differential equation
dn(r) = gm()e(1)dt + o(n(1))6(1)dw(r), where g
and o are continuous positive functions, ¢ and 0

are continuous functions. Some sufficient condi-
tions are obtained in [7—9] under which the exact
order of growth of a solution n is determined a.s.

by a solution of the corresponding ordinary differ-
ential equation Moreover, the asymptotic equiva-
lence of two solutions of stochastic differential
equations with time-depended coefficients and that
of the solutions of the corresponding ordinary dif-
ferential equations is considered in [7-9].

In this paper we will consider some generali-
zation of asymptotic equivalence of stochastic dif-
ferential equations. Making use of the theory of
pseudo-regularly varying functions, we find some
sufficient conditions on g, ¢, o, 6 and v, under
which wy(n) can be approximated a.s. by w(u),

where p is the solution of the ordinary equation
dw(r) = g(u(#))e(r)dt, n(0) = b,6 > 0.

Research objective

The objective of the research presented in this
paper is to provide some sufficient conditions, un-
der which the solutions of stochastic differential
equations become almost nonrandom in the asym-
ptotic sense.

Assumptions and the main results

Consider the stochastic differential equations
dn(t) = g("))e(1)dt + o(n(1))0(r)dw(r), t > 0. (1)

In the current paper we provide some suffi-
cient conditions under which the solution of one-
dimensional stochastic differential equation, whose
coefficients are the product of a function of the
spatial variable and the function of time, satisfies
the asymptotic relation
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lim Fl(n(t)) _

1 as.,
5o F,(t)

where F)|, F, are some nonrandom functions.

The paper is organized as follows. We start
with finding conditions under which the following
relation holds true

limm =1 a.s., )
>0 (1)

since

T ds
G(x)=|—— x=b,
@=[ o *2

t
(1) = j o(u)du, t > 0.
0

Then the main result of the paper, y-asym-
ptotic equivalence of solutions of nonautonomous
stochastic differential equation and ordinary differ-
ential equation is obtained. It means that

lim YO _ o 3)
1= y(u(r))

for given function (y(x), x € R).

Note that a result similar to (3) is proved
in [6] for an autonomous stochastic differential
equation.

Asymptotic equivalence of solutions of nonauto-
nomouse stochastic differential equation and ordi-
nary differential equation. In this section we con-
sider the stochastic differential equations (1) and
discuss, under which conditions the solution n of

this equation satisfies the relation (2).
We denote by Ce (Ce,) the class of all con-

tinuous (and positive) functions and by Ce' (Cel)

the class of all continuously differentiable (and
positive) functions and assume that ge Ce,,

oeCe and ceCe,, 0eCe are such that equa-
tion (1) has a continuous solution n.

In the sequel, we make use of the following
four conditions

lim G(x) = o; 4)
o(f) > 0, 1 > 0; ®)
lim®(7) = oo; (6)
t—o
lim sup ©.0) <o for

t—o0 (

(1) = [l o(w)|du, 1 >0. Y
0

We recall the sufficient conditions for (2)
(see [8]).
Theorem 1. Let geCe,, 9eCe and ceCe,,

0 € Ce be such that (1) has a continuous solution
n and conditions (4)—(7) hold. Assume that

2k+1

_[ 02(s)ds

SO o @®)

o 012"
We also assume the following conditions:
a) the function 2 s bounded;
g

b) the function g is continuously differenti-
able, and its derivative g'(x), x € R, is such that

t
[lg'((s)lo*(s)ds

lim2
t—o0 [6)) +(t)
=0a.s. on the set {}imn(t) = oo}. C)]

Then (2) holds a.s. on the set {}imn(t) = oo},

An application of Theorem 1 is considered in
Example 1. The result of this Example 1 is used in
Example 3 to illustrate the main result of this pa-
per.

Example 1 (Population growth model). Stocha-
stic differential equation

dn(t) = r(tn(0)dt + pn()dw(z),
t>20;m0)=1,

describes population growth (see [10]), where n is
the size of population at time #; 7 is relative growth
rate of the population that depends on time; w is
a Wiener process; B e (0;-+o0).

t

Let 7 € Ce. Denote R(r) = I r(s)ds and assu-
0

me that
R(®)>0,1>0, (10)
t
lim R(7) = lim j r(s)ds = o, (11)
t—w t—o 0
' _o. (12)

Iim——=
- R(t)
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Solution of the equation, which describes po-
pulation growth is

n() = exp {[R(r) _ %Bth . Bw(r)}.

So from (12) we conclude that n tends to
infinity a.s. with # — . Really,

lim n(r) = lim exp {(R(z) _ %ﬁzrj . Bw(r)}

= limexp{t(@—lﬁ2 + B@j} = as.

—w 2

It is clear that ®(¢) = R(f). Note, by (12), (13),
the function ®(¢) satisfy conditions (5), (6).
Since g(x) = x, we obtain (6), i.e.

lim G(x) = lim In x = oo,

X—>0 X—0

It is also clear, if (12) holds, then condition
(8) holds too

2k+l

j 02(s)ds ;
SO oy 2
o ool2h & RY

and for g'(x) =1 we get the relation (9). Then, by
Theorem 1, we have (2), i.e.

G(n(?)) In(n(?))

li =1 =1 .S.
e o) e R() .

y-asymptotic equivalence for nonautonomouse
stochastic differential equation with time-dependent
coefficients. It is not always easy or even impossible
to determine the asymptotic behavior of the sto-
chastic differential equation solution. In this case it
is advisable to consider the so-called y-asymptotic
equivalence of solutions in the sense of (3) (y is a

given positive continuously differentiable function
on (0,), strictly increasing to infinity as x — o).

Sufficient conditions for the y-asymptotic equi-
valence of solutions stochastic differential equa-
tion (1) and corresponding ordinary differential equ-
ation are presented in this section. The result gen-
eralizes those in [6].

A partial case of (3) corresponds to the prob-
lem of approaching solutions n and p considered

by A.P.Krenevich [11, 12], A.M. Samoylenko,

O.M. Stanzhytskiy [13], and A.M. Samoylenko,
O.M. Stanzhytskiy, I.G. Novak [14].

The approximation in [12—15] means that

lim (n() - p(0) =0 as. (13)

If y(x)=e”, then (3) reads as follows:
en®
Im= =1 as,

which is equivalent to (13). Thus, the problem of
approximation of solutions is a particular case of
the problem of asymptotic equivalence considered
in the current paper.

Put
GO =Gy (), g™ 0)
=gy O ),
where G is as in (6), the function v '(u),

u>wy(x,) is inverse to y, and ' is the first de-
rivative of .

Observe that (G(“’)(t),tzbk) is the inverse
function of wy(u(-)). For example, if y(-)=In("),
then G™()=G(e") and g™()=ge)e . If
v(x) =x, then G =G and gV =g.

Note that one of the basic assumptions in this
paper is that the solution of the stochastic differen-
tial equation (1) a.s. increases indefinitely and

tends to infinity.
Remark 1 (see, [16]). Solution n of equation (1)

with limn(z) = a.s. if, for example, the function
t—w

£2,0,0,c satisfy the following assumptions:

1. lim B(x) = hm

a.s.:
X—® X—0 (j(y)

1 .
m ———— | inf(a(¢, x))dr > 1, where
T 2T InlnT IXGR( t.x))

- UGN L 8ol 1
a0 =5 (r)I o) "ot 2% VN
3. lim inf 6(¢) > 0.
Consider next three relations:
lim G(¢ o, 14
lim G(r) = {g(u) (14)
ct
lim inf j du

t—o©

’ g("’)(u)G(“’)(u)
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-1
v (ct) du

= liminf _—
g(u)G(u)

-0

>0 for all ¢>1, (15)
v

ct dLl
limlimsup| ————
S R, p! gV )G (u)

-
v (ct) du

= limlim sup — =
gw)G(u)

cvl t—o0

(16)
v ()
Theorem 2. Let geCe,, 9 Ce and ceCe,,

0 € Ce be such that equation (1) has a continuous
solution m; v is a positive continuously differenti-

able function on (0,0), strictly increasing to infty

as x — oo. Assume that conditions (14) and (15)
hold. Then

G(n(t) ) =1 S., then

L)
o y(a(n)

b) if (16) holds, then

GO0 |
(1)

yn(0)
A ()

The theory of the so-called PRV-functions
developed in work [9] is used in the proof of

Theorem 2.
Proof. By conditions (14), (15) and Theo-

rem 4.4.1 (see, Section 4, p. 106, [9]), whith
=6 and f'=%, we have that G satis-
g
fies relation
(v)
liminf & D S 1 for all ¢ > 1.
t—o0 G(\V)(t)

Moreover, G is continuous function, which
is strictly increasing for large 7. Hence, function

(G(“’))‘l(') preserves the equivalence of functions.

Therefore, by Theorem 6.1 (see, [6]), next relation
follows

G GM®)
"5 (@) (@)

im Y@ GO®) _ . w(G” (G(n(t)))
(G (GM)) e w(G (@)

m Y()
B2 y((0)

Statement a) is proved.
In order to prove statement b) we assume that
(16) holds. Then, by (14), (16) and Theorem 4.4.1

(see Section 4, p. 106, [9]), with f =G and
f'= ,
g( V)

(see definition 3.3.1, p. 66, [9]).
Then, by conditions (14)—(16), and Lemma 7.2
(see, [6]), function G(“’)(~) = G(w‘l(~)) preserves

the equivalence of functions. So,

we have that G is PRV function

i YO _ GV ()
o y((D) == G (y((r)
i GO0

e (1)

Statement b) is proved.

Let us return to the population growth model
in Example 1.

Example 2. Consider stochastic differential
equations from Example 1. By Theorem 1 (see Ex-
ample 1), we have

L G0 _
—w (I)(t)
Consider the Cauchy problem for the ordi-

nary differential equation corresponding to sto-
chastic differential equation

dw(t) = r(u®)dt, t = 0; w(0) =1,

where the unique solution is u(¢) = e ¥®.

Since functions g=2x, wy(x)=Inx, we get
G(x) =Inx, y(x) =Inx. Moreover, y'(x)=e% g (x)=
=gy V(X)) =1L, GV(x)=x-Lx=1.

In this case,

ct

-1
v (ct) du e

lim inf A4 g [
g(u)G(u)

f—x©

f—wo

vl b ulnu

=Inc>0 for alle>1.

And
\l’il(a) du
limlim sup ———— =limlimsuplnc = 0.
Al 1w gw)Gu) e

v ()
So (15) and (16) are satisfied. As all the con-
ditions of Theorem 2 are fulfilled then
m Y®) _
1> y(u(r))
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Remark 2. The result of Theorem 2 with
y(x) = x coincides with the results of [8] for

lim )
1= (1)

=1 as.

Here is a simple example.
Example 3. Consider stochastic differential equ-
ation
dn(t) = t*(1+n* (1)) dr

+ (L+n2(0)"dw(t),t = 0; n(0) = b, a7

where w is a Wiener process; b is nonrandom po-
. 1
sitive constant, 0 <y < 5 a>0.

Coefficients of the equation have the form
o(f) =1,0() = 1,8(x) = o(x) = (1 + x*)".
For o > 0 we have
2k+]
j 0%(s)ds i

> - Y =2Z(2k)2a+2<oo

o ©(2%) k=0

Function is bounded. For

2o g(x) =
8

=2yx(1+x?)", 1. 1-v <1, we obtain

. . X

| "(x)=1lim2y——= =

Jim g(x) = Jim 2y e = 0
and

(1)

It follows that condition (9) holds.

We conclude, that for coefficients of equa-
tion (17) all conditions of the Theorem 1 hold.
Therefore,

GO0 _ |
e (1)

Note, g is regularly varying function with
index a =2y <1. Then, by (4) and statement 2.1
(see [3]) we get

hmlnfj >0 for all ¢ >1.

-

du
gu)G(u)

Thus, by Theorem 2, with y = x we have

lim )
1 (?)

=1 as.

Finally, a(¢,x) for equation (17) has form:
a(t,x)=t*—yx(1+x)""

Since [d,(t,x)], = y(1+x23)"2((1-2y)x? - 1),
1

we obtain x ;, = (1 ~2y) 2. Then
_ y-1
min [ (t,x)] = ¢ -y 2220
(1-2)"2
and
lim in 1nf a,(t,x)ldt =
ey \/2T Inln7 I 14,5, )]
_ limin 1 T Tye-29)" | .
T \/2T InIn7 | a+1 -t
(1-2y) 2

It means that limn(?) =« a.s.
>

Conclusions

Notion of y-asymptotic equivalence of one
dimentional nonautonomous stochastic differential
equation solution and ordinary differential equa-
tion solution are proposed. It helps to compare
behaviour of solutions in the case of unboun-
dedness of difference between of them. Sufficient
conditions of y-asymptotic equivalence of nonau-
tonomous stochastic differential equation solutions
and ordinary differential equation solutions are ob-
tained.

The result of this type where the stochastic
behavior is explained, albeit in the asymptotic sen-
se, by the behavior of the deterministic component
can be called ergodic theorem or strong law of
large numbers.

Main results of this paper can be effectively
used for the ergodicity and stability of stochastic
processes are related to the construction of sto-
chastic risk models and processes in actuarial ma-
thematics.
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O.A. TUMOLLEHKO

Y3ATAJIbHEHHS ACUMMTOTUYHOT NOBEQIHKA HEABTOHOMHWX CTOXACTUYHUX ANGEPEHUIANTBHUX PIBHAHD

Mpo6nemaTuka. BuBueHHs acMMNTOTUYHOI MOBEAiHKM PO3B’A3KIB CTOXaCTUYHMX AUdepeHLianbHUX PiBHAHb NOCIAAE O4HE 3 YiNb-
HMX Micub y 6araTbox po3finax cTpaxoBoi Ta piHaHCOBOI MaTemMaTukK1, EKOHOMIKW, Teopii ynpaBniHHS, OCKINbKM CTOXaCTUYHI AndepeH-
LianbHi piBHAHHA 5K eheKTMBHA MOAenb BUMALKOBOro NpoLecy € OCHOBOM AN AOCHiAXEHHS BUNaAKOBOro ssuLla.

MeTa pocnigxeHHsA. My JoCnimKyemMo acMMNTOTUYHY MOBEAiHKY PO3B’si3KiB HEaBTOHOMHUX CTOXaCTUYHUX AvdpepeHuianbHux pis-
HSIHb.

MeToauka peani3auii. 3anponoHoBaHO MeToA ANsi BUBYEHHS Wy-aCUMMTOTUYHMX BNAacTUBOCTEN PO3B’SA3Ky CTOXaCTUYHOrO Aude-
peHLianbHOro PiBHSAHHSA 3a JOMOMOrOK PO3B’s3KY 3BUYANHOMO AndepeHLianbHOro piBHSAHHS. [py 4oBeAeHHI OCHOBHUX pe3ynbTaTiB BU-
KOPWCTaHO TeOopito NCeBAOPEryNAPHO 3MiHHUX QOYHKLIN.

Pe3ynbTatn gocnigxeHHsA. BctaHoBneHo gocTaTHi yMOBU, 3a SKMX PO3B’SI3KM CTOXaCTUYHMX ANdEepeHLianbHUX PiBHSHb CTaloTh
Maiixe HEBUNAAKOBUMU B aCUMNTOTUHHOMY PO3YMiHHi.

BucHoBku. CTOoXacTu4Hi Mofeni anpoKCUMyoTb pearbHi npouecu HabaraTo Kpalle, HiX AeTepMiHOBaHi, OfHaK AeTepMiHOBaHi
3afavi Bigpi3Hs0TbCA BinbLUoK NerkicTio gocnigxeHHs. OaepxaHuii pesynbTaT AaB 3MOry MOPIBHATW BMacTUBOCTI PO3B’'si3Ky CTOXaCcTUy-
HOro gudepeHLianbHOro PiBHSAHHS i3 BIaCTUBOCTSIMU PO3B’SI3KY AeTepMiHOBaHOI 3aaaui.

KntovoBi cnoBa: ctoxacTnyHi andepeHuianbHi PiBHAHHSA; BIHEPIBCbKWI NpOLEC; aCMMNTOTUYHA MOBeAiHKa.

O.A. TUMOLLIEHKO

OBOBLEHVME ACUMNTOTUYECKOIO NMOBEAOEHMA HEABTOHOMHbBIX CTOXACTUYECKUX OND®OEPEHLMAIIBHbBIX
YPABHEHWW

MpoGnemaTuka. V3yyeHne acMMNTOTUYECKOrO NOBEAEHUS PELLEHNIA CTOXacTMHeckux AnddepeHumanbHbIX ypaBHEHNI 3aHUMa-
€T OiHO M3 OCHOBHbIX MECT BO MHOIMX pasfenax CTpaxoBon U hMHAHCOBOW MaTeMaTuK1, 9KOHOMUKW, TEOpUW ynpasrieHus u T.4., no-
CKOMnbKy cTOXacTudeckue anddepeHumanbHble ypaBHeHUS Kak addekTMBHas MoAenb CryvaiHoOro npouecca siBfsTCs OCHOBOMW Ans
nccnefoBaHns CrnyyYanHoro siBMeHns.

Llenb nccneposanusa. Mbl uccrnefyem acuMnToTUYeckoe NnoBefeHne peLleHuii HeaBTOHOMHbIX CToXxacTu4eckunx avddepeHum-
anbHbIX ypaBHEHWI.

MeToguka peanusauuu. [NpeanoxeH mMeToa AN U3y4YeHUs y-aCMMMITOTUYECKUX CBOWCTB peLleHust cTtoxactudeckoro audde-
pPeHUManbHOro ypaBHEHUS C MOMOLLBIO pelleHnss 0ObIKHOBEHHOro AnddepeHumnanbHoro ypaBHeHus. [MNpu gokasaTenbCcTBe OCHOBHBIX
pe3ynbTaToB UCNONb30BaHa TEOPUS NCEBAOPErYNSPHO U3MEHSIOLLMXCA (OYHKLWIA.

Pe3ynbTaTbl nccneaoBaHUA. [onyyeHbl 4OCTAaTOYHbIE YCMOBWS, NPU KOTOPbBIX PELLEHUst CToXacTUYeckux anddepeHumansHbIX
YPaBHEHWI CTAHOBATCA NOYTU CMyYalHbIMU B aCUMMTOTUYECKOM CMbICIE.

BbiBogbl. CToXacTuyeckme Mogenu annpokCUMUPYIOT pearnbHble MPOoLecChl ropasao nydlle, Yem AeTepMUHUPOBaHHbIE, OA4HAKO
[eTepMUHMPOBaHHbIe 3a4ayn oTnuyalTcs Gonbluei NerkocTblo uccrnenoBaHus. [peacTaBneHHbii pesynbTaT Mo3BONWI CPaBHUTH
CBOWCTBA peLLEHUst CTOXacTu4eckoro anddepeHUmanbHOro ypaBHeHVS CO CBOWCTBaMM peLLEeHUst AeTEPMUHUPOBAHHON 3a4a4n.

KnioueBble cnoBa: cTtoxacTuyeckve anddepeHumanbHble ypaBHEHNUS; BAHEPOBCKWIA NPOLIECC; aCUMMTOTUYECKOe NoBeAeHMe.
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(izuko-mMareMaTUYHOTO (HaKYJIBTETY 20 tpaBHs 2016 poky
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