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ACYCLIC-AND-ASYMMETRIC PAYOFF TRIPLET REFINEMENT OF PURE STRATEGY
EFFICIENT NASH EQUILIBRIA IN TRIMATRIX GAMES
BY MAXIMINIMIN AND SUPEROPTIMALITY

Background. A problem of selecting amongst efficient Nash equilibria is solved by refining them. The existing ap-
proaches to refining do not guarantee that the refined efficient Nash equilibrium will be single. Nevertheless, a novel
approach to refining pure strategy efficient Nash equilibria in bimatrix games suggested before exploits the maximin
and superoptimality rule that, at least partially, remove the uncertainty of the equilibria.

Objective. The goal of the article is to develop the bimatrix game approach expanding it over trimatrix games for re-
fining efficient Nash equilibria as much further as possible.

Methods. An efficient Nash equilibria refinement is suggested for trimatrix games, which is based on expanding the
refinement approach for bimatrix games, exploiting the maximinimin and superoptimality. Games with acyclic-and-
asymmetric payoff triplets are only considered.

Results. Series of trimatrix game simulations allow concluding on that whereas the refinement is needed in about be-
tween 33 % and 65 % of trimatrix games where players possess between 4 to 12 pure strategies (this rate increases as
the game size increases), it is perfectly accomplished to a single metaequilibrium in roughly between 46 % and 52 %
of those cases (this rate decreases as the game size increases), using maximinimin only, without the superoptimality
rule. Exploiting the maximin, expanded to the maximinimin principle, and superoptimality using now double-
summing, the main work for the refinement is off the maximinimin principle.

Conclusions. An algorithm for the developed approach refinement in trimatrix games is very simple. It consists of four
generalized items. Although a total fail of the refinement is not excluded, the aggregate efficiency of removing the

uncertainty of equilibria by the maximinimin principle and superoptimality rule seems satisfactory.
Keywords: trimatrix game; efficient Nash equilibria; refinement; maximinimin; superoptimality rule.

Introduction

Efficient Nash equilibria seeming a certain
output of game models result in another decision-
making problem. Such a decision-making problem
is solved by refining the equilibria [1, 2]. The re-
finement implies selecting the best efficient Nash
equilibria, if not going into e-equilibria and the
likes [3, 4]. In a wider sense, the refinement im-
plies narrowing down the solutions (whereas effi-
cient Nash equilibria are a particular example of a
set of the game model solutions) [1, 5, 6].

The existing approaches to refining do not
guarantee that the refined efficient Nash equilibri-
um will be single [1, 2, 6, 7]. And sometimes effi-
cient Nash equilibria are nonrefinable because of
lack of an additional information that could have
helped in distinguishing among efficient Nash equi-
libria [8, 9]. Simple examples of the nonrefinability
are easily shown with bimatrix games, wherein effi-
cient Nash equilibria produce identical/symmetric
payofts [7].

Trimatrix games modeling trilateral interac-
tions have a little bit harder decision-making prob-
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lems on the refinement. It is clearly explained with
that efficient Nash equilibria in a trimatrix game
produce payoff triplets, and thus distinguishing
among such triplets becomes more sophisticated.
Meanwhile, trimatrix game models have a wider
applicability than that of bimatrix games [10, 11].

A novel approach to refining pure strategy ef-
ficient Nash equilibria in bimatrix games was sug-
gested in article [7]. It exploits the maximin rule
aiming at guaranteeing payoffs. The superoptimal-
ity rule [12, 13] is involved if maximin fails to pro-
duce just a single refined efficient Nash equilib-
rium. Without going into mixed strategies, that bima-
trix game approach partially removes/reduces the un-
certainty of efficient Nash equilibria. But there are
two negative cases when the refinement fails.

Problem statement

The goal of the article is to develop the bimat-
rix game approach expanding it over trimatrix
games for refining efficient Nash equilibria as
much further as possible. For achieving the goal,
the eight tasks are to be accomplished:
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1. To state denotations of trimatrix game and
its efficient Nash equilibria that are going to be re-
fined.

2. To circumscribe properties of payoff matri-
ces, which are to be considered only for the refine-
ment.

3. To circumscribe properties of efficient
Nash equilibria, which are only possible to be re-
fined for the trimatrix games whose payoff matrices
have the before-circumscribed properties.

4. To append the maximin principle and su-
peroptimality rule for selecting amongst nonrefin-
able efficient Nash equilibria in trimatrix games.

5. To describe the reasonability that will an-
swer a question of why players should non-
cooperatively come at the best efficient Nash equi-
librium returned by the developed approach re-
finement.

6. To draw a generalized scheme of an algo-
rithm of using the developed approach refinement
in trimatrix games.

7. To show illustratively how the algorithm
works on real-valued examples of trimatrix games
having efficient Nash equilibria, which are nonre-
finable by the known concepts [1, 2, 5, 7, 14, 15].

8. To discuss the developed approach and its
algorithm, and emphasize some unsolved issues, if
any, in them [7].

The said task of showing illustratively the al-
gorithm’s work is aimed at understanding the proc-
ess of refinement better. Advantages of selec-
ted/refined Nash equilibria should be seen clearly.
Disadvantages and issues ought to be explained as
well.

Denotations of trimatrix game and its efficient
Nash equilibria

We consider a trimatrix game with real-valued
M x N x K payoff matrices

A = (@) mxnx  and

B = (b)) munxx and (1)

C= (cmnk)MxNxK

of the first, second, and third players, whose sets of
pure strategies are X={x,}M,, Y={y,}Y,, Z=
={z,}K,, M eN\{l}, N eN\{l}, K eN\{l}, re-
spectively. The game is assumed to be non-repea-
table. Set E = {eq}qQ:1 is assumed to be a set of pure

strategy efficient Nash equilibria in trimatrix game

with payoff matrices (1), where Q € N\{l} (having
a case Q =1 makes a refinement needless):
e, ={xp Vg 24}

by x; e X

(2)
and y; eY

and z;eZ.

Pure strategy efficient Nash equilibrium (2) pro-
duces a payoff triplet
{aX, b, c; 3)

9 79> 7q

whose elements are the respective elements of pay-
off matrices (1). Nash equilibria, which are not ef-
ficient, bear no utility, and thus they are not speci-
fied intentionally [1, 2, 7, 11, 16, 17].

The set of all pure strategy efficient Nash equi-
libria in trimatrix game with payoff matrices (1) is
a subset of all pure strategy situations containing
equilibrium strategies of every player:

E:{eq}quch*xY*xZ*chYxZ “4)
by
Xe={x,.} peon € X and
Yo={ptncor. =¥ and %)
Zi = e < £
where the indices’ subsets
o#,={l, M} and
o#. < {l, N} and
K. {l, K} (6)

are such that for every element of set X.
3q {1, Q} such that x, ee,, for every element
of set Y. 3ge{l,Q} such that y, ee,, and

g e{l,0} such
every

for every element of set Z.
that z, ee,. Note that
set X.xY.xZ. is not necessarily an equilibri-
um point, some triplets {x,._, ¥,, <.} €
e X« xY.x Z. may not be the equilibria (see Fig. 1
and also refer to Fig. 1 in [7]).

element of

i. e.
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Fig. 1. An example sketch of the efficient Nash equilibria set (highlighted via dashed rectangles) and its relation to subsets (5) over a
player’s payoff three-dimensional matrix of size 7x 4 x5 (refer also to a similar bimatrix game example in [7])

It is worth to remember that set E = {eq}qQ:1

contains only those situations that are not domi-
nated, strictly and non-strictly. If a situation is
dominated non-strictly then it is not an efficient
Nash equilibrium. For trimatrix games, it means
that a situation producing payoffs (without losing
generality)

{a; - by, cy} Ye>0 7
cannot be an efficient Nash equilibrium, whichever
situation producing payoffs (3) is. If we implied the
weak Pareto efficiency for the efficient Nash equi-
libria, then both situations producing payoffs (3)
and (7) would be efficient, if the first situation was
known as an efficient Nash equilibrium. With the
weak efficiency, additionally to the said, we would
have a situation producing payoffs (again, without
losing generality)

{a; —e b;=8,¢c} Ve>0 and v&>0 (8)
efficient as well [16, 18, 19]. Weak efficient Nash
equilibria are fairly senseless in bimatrix games,
and are fairly senseless in those trimatrix games,
where the situation producing payoffs (3) is an ef-
ficient equilibrium and we deal with the situation
producing payoffs (8) by pretty great ¢ and §.
Weak efficiency of Nash equilibria is not so sense-

less for trimatrix games with weak efficient Nash
equilibria producing payoffs (3) and (7) by pretty
small ¢ [10, 11, 16, 20, 21].

Properties of payoff matrices (1) to be consid-
ered for the refinement

Matrices (1) cannot be null matrices. Gene-
rally, none of those three matrices can have ele-
ments, whose values are the same. They also do
not contain strictly dominated two-dimensional
slices. For example, instead of 3x2x2 matrices

7 4) (6 2

A=|5 5 0 41|,

6 3) (50

7 6) (1 3
B=(|7 6 4 51|, )
2 1) (9 2

7 6) (52
C={]12 8| |1 8]|],
59) (1 2
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we should consider a trimatrix game with payoff
2x2x?2 matrices [11, 15, 22]

I

o))

o)

C = s

2 8 1 8

because the third slice of matrix A in (9) is strictly
dominated by its first slice (slicing vertically). Then
the 3x2x2 game is reduced to the 2x2x2 game
as the first player will not ever use one’s strictly
dominated strategy. Note that the trimatrix game
with payoff matrices (10) has two efficient Nash
equilibria — e, ={x,, y;, z;} and e, ={x5, ¥,, 25}
producing the respective payoffs {7,7 7} and
{4, 5, 8} . Meanwhile, payoffs {4, 5, 8} are produced
by the situation that belongs to the non-strictly
dominated second slice of matrix C (slicing in
depth, where the left flat submatrix non-strictly
dominates the right flat submatrix).

A:

(10)

Properties of efficient Nash equilibria, which
are only possible to be refined

Let matrix A have elements whose values are
only oy, and a, and let matrix B have elements

whose values are only B, and B, and let matrix C
have elements whose values are only vy, and vy. If
matrices

A-a, and B-B, and C-y, (11)

are of diagonal/antidiagonal M x N matrices in
each of their third-dimension’s slices, then, which-
ever values

[0(0 [30 Y016R3

are, efficient Nash equilibria, which are only possi-
ble to be refined, must produce anything but pay-
offs

{a;, b;; C; = {as B’ 'Y}

by [a@ B y]eR? (12)

Vg=10

because those payoff-identical equilibria may be
absolutely non-distinguishable. For instance, a tri-
matrix 2x2x2 game with payoffs matrices

S [
(I
= (MR

by o >ag, B>Bg, v>7,

(13)

has two efficient Nash equilibria producing identi-
cal payoff triplets {a, B, y}. It is clear that they are

absolutely non-distinguishable here (we will under-
stand a rigorous proof later). Note that the slices
(left and right ones) of matrix C are different,
unlike the slices of matrices A and B. Obviously,
if matrices (11) are not of square M x N matrices
in each of their third-dimension’s slices, but these
slices are semi-diagonal/semi-antidiagonal matrices
with additional constant rows/columns, then the
same condition holds — the produced payoffs (12)
are non-distinguishable. As a simple appendix to
the trimatrix game with payoffs matrices (13), this
could be a trimatrix 3x2x2 game with payoffs
matrices

ay o a, o
A=||a, a ay, o || and

a o a oy

Bo B ) (Bo B
B=||By By| [Bo Bo || and

B Bo B Bo (14)

C={{vo 7o Yo Yo
Yo Yo Y Yo

by a>ay, B>Bg, v>70,

wherein the said identical payoff triplets are still
non-distinguishable (e. g., see [8, 11, 23, 24]).
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Maximin principle and superoptimality rule for Zuw =426} poc ot
selecting amongst nonrefinable efficient Nash ) ) 18
equilibria in trimatrix games =arg n%a*x ,;Ilel@rk nngé/r} Copnk. CLsC Z (18)
. oy . k*EQ/)(;
Once the efficient Nash equilibria are found, by Ko C K,

a reduced trimatrix game defined on product
X,xY,xZ,_ isbuilt. In such a game, payoff matri-

ces are
A = (@pnp) m.xn.<k. and
B = (bynk) m.xn.xk. and (15)
C. = k) MxN.xK.
where

M*:|@/ﬂ*|:|X*|, N* :|@/V;<|:|Y*|,

K*:|@9{.*|:|Z*|,

£

*
a =aqa bm]nlk]

*
mynk, manak > - bm*n,,k* d Cm]nlkl = Conn.k.

by re-indexing with
mlzl,M* and m E@/ﬂ*, nlzl, N* and
Ny EC-’/’/;, klzl, K* and k* 69%;.

If matrices (15), being the corresponding subma-
trices of matrices (1), become flat, then one of the
players has already a single strategy belonging to all
of those Q efficient equilibria. If matrices (15) are
not flat, then they constitute the reduced trimatrix
M. x N.x K. game, and the uncertainty amongst

the equilibria still is the same as it is for the initial
game.

To remove the uncertainty, the maximin prin-
ciple can be applied guaranteeing the correspon-
ding payoffs for the players. For trimatrix
M. x N. x K. games, this principle is the maxi-

minimin [25, 26]:

X = {xm**}m**e@/ﬂ*

=arg max min min a,,,, < X.c X (16)
Xm. mectkiecstn "
mye ot
by otn c ot ,
Yo = V. S pocor.
=arg max min minb, ., cY.cY (17)

Vn micot ke
ne o

by et cots,

whereupon the first, second, and third players are
guaranteed to get payoffs not less than

a« = max min min a 19
B e ol e oo kue e msnsk > ( )
b« = max min min b 20

nwc oM mve ot ke K ks> ( )
Cw = Max min min c,, .z , 2D

ke K mue ot niechs

respectively. Note that, however, not all situations
in the set

L=X**XY**XZ** (22)

are efficient Nash equilibria. Moreover, set (22)
may not contain any equilibria.
If set

R=LNE={XuxYuxZu}N{e, 2, (23)

is nonempty then it contains the refined efficient
Nash equilibria. In particular, if set (23) contains
just a single element, then the refinement is done
as it is the single efficient Nash equilibrium. If
R= or |R|>1 then the superoptimality rule

originally introduced for distinguishing optimal
strategies in matrix games (see [12, 13, 27]) can be
applied just as well as it is applied for bimatrix
games in [7].

If set R=¢ then using strategies from sub-
sets (16), (17), and (18) involves players into non-
stability provoking them to search new pure strate-
gies beyond these subsets for every game round (as
there is no a single equilibrium point). In such a
case, one of the best actions is to use strategies
from subsets

= arg max Y g cXec X (24

M ek kee K
m*e@//ﬁne <

by ol cod.,

Y* = {yﬁ*}ﬁ*egy**

= arg max > D bppp Yy

e m.c ot kec K
nie ol

by et coti,

(25)
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Zo = zg Vo
=argmax », > CppcZicZ (26)

zk* m«e ot ne ks
ke K

by X' ks,

that guarantee for players their best payoffs under
uncertainty of the efficient equilibria. This uncer-
tainty reduction concerns as the trimatrix game
with payoff matrices (1), as well as the reduced
game with payoff matrices (15), whether matri-
ces (15) are flat or not.

In the case of |R|>1 we still have an uncer-

tainty of that which equilibrium to be selected, as
there are at least two equilibria in product (22) of
maximinimin subsets (16), (17), and (18). Let

R XpxYprxZy 27)
by

(xR y B BN e R, xR e Xy,
yR e Yr, 7R eZy,
and the respective indices’ subsets
M cotle cott.
N coMi coti,
B e oK,
by which
Xpg = {xm§5>}m£5>5@miR> )
Yp={y,whymcopm s (28)
Zr =1 mwhiw e gem -
If | Xz|>1 then
X R = 4%, 00 it o
=arg max

X
mi®
miP e ot iR

cApcXucXecX

a
X B (R R m{ PR
nR e aliiR) kR e il

by o#iR? cotti® coth cot, (29)

otherwise, if | Xz |=1,then Xpz=Xp. If [V |>1
then

*
Y =000 bui coniro

=arg max
nif
iR e opilR

cYrcYucY.cY

bm<R> (R R
NI 854
mi e ot kR e LR

by oAl colilR coMe coti, (30)

otherwise, if |V |=1, then Yz =Y. If [Z,|>1
then
Z R ={qym b c g
=arg max
Lo
kP earif

C (R), (R (R)
mes ' nas ks
R e iR miB e ot iR

by R catii® ek e, (31)

otherwise, if |Z,|=1, then Zy =Z,. Note that

finding sets (29), (30), and (31) does not guarantee
that

(XpxYrxZp}NR=D, (32)

where a case

{XrxYpxZpiNR|=1 (33)

is as ideal as the case |R|=1. Statement (32) is

only assuredly true for one of the three cases:

1) when | X, |=1 and |V |=1;

2) when | Xz |=1 and |Z;|=1;

3) when |Yg|=1and |Z;|=1.

Hence, the refinement is done by processing
the reduced game with payoff matrices (15),
wherein primarily maximinimin subsets (16), (17),
and (18) are found along with maximinimin pay-
offs (19), (20), and (21). The process of refining
is continued to payoff aggregate maximizations
if |R|#1. However, what makes players come

through such a process? Will the best efficient
Nash equilibrium, straightforwardly returned by
|R|=1 or by (33), be selected by the players,

which act non-cooperatively, though? These ques-
tions are to be answered in the section right below.

Why players should non-cooperatively come at
the best efficient Nash equilibrium returned by
the developed approach refinement

The refinement by the approach developed for
trimatrix games is counted perfectly finished when
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|[R|=1 or (33) is true. If product (22) of the

maximinimin subsets has responded perfectly, i. e.
set (22) contains a single efficient equilibrium,
then every player does not have any reason to use
strategies from other situations (all the more if they
are not equilibria). Surely, that single efficient
equilibrium will be unprofitable/disadvantageous
for one or two players, if there are at least two
equilibria producing different payoffs. But if a
player losing some at the single refined efficient
equilibrium tries to improve one’s payoff, then it
will be hardly improved even for a few rounds of
the game as the improvement needs that other
players do not change their strategies. In other
words, while at the Nash equilibrium a player can-
not improve one’s payoff by acting oneself, at the
single refined efficient equilibrium it is unlikely for
a player to improve one’s payoff at least for a few
rounds of the game [16, 22, 27, 28].

For instance, a trimatrix game with payoff
2 x2x2 matrices

7 4) (6 2
A= ,
55 2 4
(7 6 1 3
B= , (34)
7 6) 45
(7 4\ (5 2
C= ,
2 8 2 8

being slightly modified matrices (10), has two ef-
ficient Nash equilibria — e, ={x,, y, %} and

e, ={x,, 5, 7,} producing the respective payoffs
{7,7,7} and {4, 5, 8}. Thus, here

E={eq 2:1 c XexYexZx
:{xl’ X2}><{y1, y2}><{z1, Z2}=X><Y><Z,

Maximinimin subsets (16), (17), and (18) are as
follows:

X = arg max}{min{7, 4, 6,2}, min{5, 5, 2, 4}}

X1, Xy

=argmax{2, 2} ={x, x}=X. =X, (35)
{x1, xy}

Y. = arg {max}{min{7, 1,7, 4}, min{6, 3, 6, 5}}
Y2

=arg max{L, 3} ={y,}c Vi Y, (36)
.y}

Z« =argmax {min{7, 4, 2, 8}, min{5, 2, 2, 8}}

{21, 25}

=arg max{27 2} = {ZIa Zz} =Z.=7Z ’

{11, Zz}

(37)

whereupon the players are guaranteed to get pay-
offs not less than

a**=2, b**:3, Cix =2
by (19)—(21). As
e2 :{X2, y2, Zz}EX*XY*XZ*

(38)

=1{xp, Xo} x{yy} x {2y, 25}

is the single refined efficient equilibrium, then the
refinement is perfectly finished here. The players
aim at payoffs {4, 5,8}. For the first and second
players these payoffs are less than those 7 and 7 at
e, ={x., y,, z;}. But if they try to improve those 4
and 5, say, by changing both their strategies (to the
first-indexed strategies), the payoffs will become
{6,1,5}. Then the second player losing so much
upon the “improvement” will likely attempt to
change one’s strategy. Meanwhile, the third player
may think about to get at equilibrium ¢, =
={x, ¥y, z;} and so on, this mess will go on. This

is why the single refined efficient equilibrium in-
cluded into the product of maximinimin subsets
(35)—(37) is an attractive point for all the players.
This situation can be called the metaequilibrium.
The metaequilibrium in this case, where |R|=1, is
“supported” by the maximinimin principle.

The similar reasoning stands for the case
when |R|>1 but (33) is true. Having slightly

modified matrices (34) to

G
-l Sl

) o))

we get a maximinimin subsets’ product equal to
the product of players’ pure strategy sets, i. e.

(39)

E: R:{{x17 y]7 z]}){xZJ y23 Zz}}
CXRXYRXZR:X**XY**XZ**
=XuxYixZi=XxYxZ
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and the same payoff triplets are produced. Then
the superoptimality rule by (29)—(31) is applied:

Xy =arg max}{7+4+6+2,5+5+2+4}

{xlsXZ
=arg max{19, 16} = {x,}, (40)
{x1, x5}
Y =argmax{7+3+7+4,6+3+6+5}
(v, »ab
= arg max{21, 20} = {y,}, (41)
{1 o}
Zp=argmax{7+4+2+85+2+2+8}
{21, 22}
—argmax{21,17} = {z,}, (42)

{z), 25}

whence e, ={x,, y;, z;} is the metaequilibrium.

An algorithm of using the developed approach
refinement in trimatrix games

The developed approach refinement gives us
one of the seven possible final results:

1. A single metaequilibrium is returned when
|R|=1 being the perfect and fastest refinement re-
sult.

2. A single metaequilibrium is returned when
|[R|>1 and (33) is true being the perfect refine-
ment result as well.

3. A fail of the refinement occurs when
|R|>1 and (33) is false by

(XpxYrxZpINR=0, (43)

that is the same as the fail of condition (32). Such
a result is not treated totally negative if

I<|R|<|E]| (44)

implying that the uncertainty of equilibria has been
nonetheless partially reduced. The total negative
result is when |R|=|E | by (43), that is the super-
optimality rule does not hit an equilibrium by the
maximinimin hit the whole set of the equilibria.

4. A few metaequilibria are returned when
|R|>1 and (33) is false by

KXz xYrxZglNR|>1. (45)
Such a result is treated positive if
< {XpxYrxZgiNRI|<|E]. (46)

However, the result will be treated total negative
(factually, a fail of the refinement) when

{XrxYrxZRINR|=|E], (47)

that is both the maximinimin and superoptimality
work for nothing, hitting the whole set of the equi-
libria and making thus no uncertainty reduction
(those metaequilibria are the same as all those effi-
cient equilibria).

5. A single metaequilibrium is returned when
R=¢ but

HX.xYexZJINE|=1. (48)

Although maximinimin misses all the equilibria,
the superoptimality rule perfectly hits the single
metaequilibrium.

6. The refinement totally fails when R =
and

XoxVox ZINE=02. (49)

Here both the maximinimin and superoptimality
do not work, missing all the equilibria.

7. A few metaequilibria are returned when
R =0 but

HX.xYex ZJNE|>1. (50)
Such a result is treated positive if

However, the result will be treated total negative
(factually, a fail of the refinement) when

HX.xYex ZONE|=|E]|, (52)

that is the superoptimality rules works for nothing,
hitting the whole set of the equilibria and making
thus no uncertainty reduction (those metaequilibria
are the same as all those efficient equilibria).

The developed approach refinement in trima-
trix games should be used algorithmically (Fig. 2):

1. Find maximinimin subsets (16)—(18) over
payoff matrices (15).

2. Return a single metaequilibrium if |R|=1,
i. e. the product of maximinimin subsets (16)—(18)
contains the single equilibrium.

3. If |R|>1 then maximize the respective

players’ payoffs over subsets (28), and find those of
subsets (29)—(31) for whom the corresponding sub-
sets in (28) contain more than one strategy. Even-
tually, return the resulting metaequilibrium or
metaequilibria in set
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| Find maximinimin subsets (16), (17), (18) |

True

A single
metaequilibrium
is in set (23)

Intersection R by (23) contains just
single equilibrium

| Find subsets (28) |
|

Find
subset (29)

Find
subset (30)

Find
subset (31)
|

14

A

y

A

y

True False

| Find subsets (24), (25), (26) |

True

nonempty

The players’
metaequilibrium
strategies are in
intersection (54)

| Compose product X, xY, x Z, |

True

Intersection (53) is
nonempty

|The players’ metaequilibrium strategies are in intersection (53) |

False

Intersection (54) is

—

The refinement
totally fails

=

| The superoptimality rule fails

Fig. 2. An algorithmic generalized scheme for the Nash equilibria refinement in trimatrix games
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(XpxYrxZiNR, (53)
if set (53) is not empty.

4. Otherwise, if R=¢ then find subsets
(24)—(26) that maximize the respective players’
payoffs over subsets (5). Eventually, return the re-
sulting set

(XexYexZINE, (54)

whether containing metaequilibria or not.
Obviously, the algorithm cannot guarantee
that a single efficient equilibrium will remain after
the refinement. Nevertheless, its recommendations
are based on pure logic and reasonability of aiming
at the guaranteed payoffs, whether at a metaequi-
librium or not [1, 10, 11, 16, 29, 30]. An example

is a trimatrix game with payoff 7x4x5 matrices
(Fig. 3), whose set of efficient equilibria
E ={eo_1 = X0 V4 21}5 {X0 V4 23},

(x4 y1> 2abs x4 Yoo 23} {xs5, ¥2, 241 (55)
produces the respective payoffs
{9,7,8}, {7,9,8}, {9,8,7}, {9,6,9}, {88 9}. (56)
Product (22)

L= XuuxYiu X Zsx
={Xy, X4, X5} x{V1, V2, Vat {245 24} (57)

of maximinimin subsets (16)—(18) contains three
equilibria:

39l 06| |5//0] 4(3] [5]]2]112] |[7]|8] 6]8] |4|/1]|5 |4

ENZE BE s EETE EEae 3174<////¥\\\\
o|lo| 5 12| |2|(1] 4 (2| |3(/2| 9|4 |5/|/4] 98| 6|21 |7| “JOBIHOl _|2[[4][7 3144
BEEE FEcF BEEE BEETE FF o 'mEE e EEE
B2 EZE o0 EETE BEEoE 70 72 EEE m2eE =Es
52| 51| |5|l6] 6|7 [2]|7] 511 |2(|5| 83| |6//2]4 |7 \\\

6](5] 3 0] (03] 4[4 |8][2] 01 |7/[8 0[6] [3]0]1 |5 Zy=2,
71[x] 4 Jo| |s||1| 3 (8] [x]|3]112] [x]]2]315] [3|8/8 |5 x* Yy

BEETE Bédos HEZ2EH BEESE 6697<Rf///¥\\\\
BE ol (5ls/1)|s] MEE oF S 7 = 9|l6] 9 |0| “[leliet7] 1oll7[le |1li5t0
[Z1[0] 6 |3 4116] 919 4]l6] 6 |2 810/ 2 |5 g5 o I | [[MEE 4)16/[2 8/l0[[5
e 28 45 83 HE o B 4]/8] 6 [5 625 |4]] [[o][8][5 1/[8[l2 a[8][5
0|13/ 918/ |7||7/ 50/ |8l/0] 2|0 |8|1]8 0] |5||7|1|5 \\\

7](5] 8 (4] |4/0]8 (2] |8]2] 58] (96]6[0] [5]2/4 1] Zy=27,

ol[9] 212| |5||o| 6|1| [1]|2] 8|3] [7|/o] 1]4| |e||8] 51 x* Y,

BEESRE T2 B EHETE BEEYE 8678<Rf///l\\\\
7118/ 8 12| |8||1 1|5 |e||4| 9|7 |6|[3| 8|6 |1]9] 9|8 ‘[3I9t8] [7[[1[[8] [oli5H4
[4][5] 2 |4 33] 87 | B2 | 611] 9]el] []4]l5]]4 3l[al[2] [7l[3[[8
EETE Eo 2 EErE EEeE oD seE EEE STE EE
2119l 312| |7||e| 512| |4l|0| 6|3| |6|7 6]0| [3]||1] 1|0 \\\

11/(0] 0 [5] [1J3) 25 |54 69 |1/[1] 0[O0 [1]|5] 6|5 Zy=27, /

Fig. 3. Screenshots of payoff matrices of a trimatrix 7 x4 x5 game showing strategies of sets (5) as stripes corresponding to efficient
equilibria highlighted bold, and, after having reduced the game, strategies of maximinimin subsets (16)—(18) as stripes (to

the right); sets X ;, Y ;, and Z ; are arrowed; two payoff triplets produced by situations of product X ; xY ; xZ ; are

circle-dotted
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R=LNE={e,es, es}}

={{xy, ¥4, 21} {x4, V15 24} {XSJ Y2 241t (58)

But the refinement is finished at the stage of
set (58) as the superoptimality rule by (29)—(31)
gives the empty set (53):

Xgp=arg max {9+1+9+3+4+4,

{X,, X4, X5

1+5+5+9+2+1,2+4+6+2+8+3}
max }{30,23,25}={x2},

{x5, x4, X5

= arg (39)

Yr =arg max {6+7+0+1+8+4,
(V1 ¥2, ya}

6+0+8+5+0+8 7+3+5+0+5+5}
=arg max {26,27,25}={y,},

{vis ¥2, va}

(60)

Zp=argmax{3+9+8+4+5+4+5+9+8,

{11714}
9+5+4+7+3+8+3+9+7}
=arg max{55, 55} = {z}, 24},

{21 24}

(61)

whence
{XI;k ><YR*><Z;}ﬂR
={{x2, 2, T}» (X2, Y2, 24 N X0, Vs 24,

{X4, yls Z4}a {XS’ y2’ Z4}} =. (62)

The recommendation of strategies (59)—(61) does
not mean that the players must choose between
two situations {x,, y,, z;} and {x,, y,, z,} produc-
ing too disappointing payoff triplets (especially for
the first and second players) {1, 6,9} and {4,5, 5}.
It just means that the uncertainty of the equilibria
has been partially reduced from five equilibria
within set (55) down to three equilibria within
set (58), i. e. set (55) has been partially refined into
set (58).

In another trimatrix game example, with pay-
off 3x2x3 matrices

1 5) (0 9) (5 3
A=|14 5 12 919 1]],
8 5)\5 5)\7 7

4 4 39 7 3
B=||6 6 51 6 6], (63)
9 5 31 6 2

39 2 0 8 7
C=||5 8 57 5 311,
4 5 1 7 10
there are four efficient equilibria:

E = {eq}2=1 = {{xla y23 Zl}s {x2a yla 13},

{x25 y2s Zl}) {x3s yls Zl }} (64)
and the respective payoffs
{54,9}, {9,6,5}, {5,6,8}, {89, 4} (65)

are produced by situations in set (64). Having re-
duced this game to 3x2x2 game, where

1 5) (5 3
A.=|l4 5| |9 1],
8§ 5) |77
4 4) (7 3
B. = 66} 66}, (66)
9 5) 16 2

39 8 7
C.=|5 8 5 3|,
4 5 1 0
we obtain a single maximinimin situation that hap-
pens to be an equilibrium:

L:X**XY**XZ**

= {xhx vzt = x5, v, 1l = {est,  (67)

i.e. |[R|=1. This is an example of the totally suc-

cessful/perfect refinement. Here, at single meta-
equilibrium (67), the third player may be appar-
ently not satisfied with the metaequilibrium payoff
triplet {8, 9, 4}. But if the third player attempts to

change one’s strategy, then the payoff will be equal
to 1 — in both games with matrices (63) and (66) —
as the other players have no reasons to leave their
maximinimin strategies.

Discussion of advantages, disadvantages, and
issues

The exemplified games are rather close to ul-
timate illustrative cases where payoffs appear illogi-
cally scattered [19, 22, 24, 31]. In more real exam-
ples, the developed approach works fine. It is con-
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10x10x10

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

Fig. 4. Numbers characterizing the refinement for 10,000 game simulations with (68) by C =40 : 1 — a number of games without
Nash equilibria; 2 — a single equilibrium; 3 — a single efficient equilibrium; 4 — Q@ >1;5— |R|=1;6 — |R|>1 and ei-
ther (33) or (45) is true (at least a metaequilibrium is returned by the superoptimality rule); 7 — R = and either (48) or
(50) is true (at least a metaequilibrium is returned by the superoptimality rule); 8 — | R|>1 but (43) is true (the superopti-
mality rule fails); 9 — R= and (49) is true (the refinement totally fails)
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firmed by series of trimatrix game simulations,
where entries of payoff matrices (1) are formed on
a base of pseudorandom numbers drawn from the
standard uniform distribution on the open interval
(0;1). Before a simulation, an M x N x K payoff

matrix is taken equal to

¥(10-0(M, N, K))+C (68)

by a function ®(M, N, K) returning a pseudoran-

dom M x N x K matrix drawn from the standard
uniform distribution on the open interval (0;1)

and a function W¥(&) returning the integer part of
number &, where C is a positive constant taken

such that the payoffs would not appear illogically
scattered (see a generator of examples in [32]). A
few typical simulation results are shown in Fig. 4.
They allow concluding on that whereas the refine-
ment is needed in about between 33 % and 65 % of
trimatrix games where players possess between 4 to
12 pure strategies (this rate increases as the game
size increases), it is perfectly accomplished to a
single metaequilibrium in roughly between 46 %
and 52 % of those cases (this rate decreases as the
game size increases), using maximinimin only,
without the superoptimality rule.

A merit of the said percentage rate is supple-
mented with ratios among those bars in Fig. 4. As
the game size increases, additionally to the men-
tioned above, the following features are observed:

1. A number of games without Nash equilibria
decreases.

2. A number of games having a single Nash
equilibrium decreases.

3. A number of games having a single efficient
equilibrium (while there are more than a one Nash
equilibrium) increases.

4. Despite the increment of the single efficient
equilibrium, a number of games having multiple
efficient equilibria increases also. Such multiplicity
is pretty conditional for games of smaller sizes as
they have only a few equilibria. For example, a
majority of the simulated 4x4x4 games with
multiple efficient equilibria has had only two equi-
libria. Bigger size games have more real “multiplic-
ity” of equilibria, where a rate of cases with three
and more equilibria increases.

5. A number of cases when |R|=1 (a single

metaequilibrium) increases but it goes slower than
the increment of multiple efficient equilibria, and
thus the percentage rate of the perfectly accom-
plished refinement (to a single metaequilibrium us-
ing maximinimin only, without the superoptimality

rule) slowly decreases (as it has been mentioned
before referring to Fig. 4).

6. A number of cases when both the maxi-
minimin and superoptimality work fine is a few
times lesser than the perfect refinement accom-
plishment, but this number slightly exceeds a num-
ber of cases when R = and at least a metaequi-
librium is returned by the superoptimality rule. Be-
sides, it is about to exceed a number of cases when
|R|>1 but the superoptimality rule fails.

7. Despite the increment of the perfect re-
finement accomplishment, a number of total fails
of the refinement, when R=¢ and (49) is true,
increases. It is plausibly explained with that the in-
creasing number of games with multiple efficient
equilibria increases chances of nonrefinability.

Thus, advantages of the developed approach
are obvious. The maximinimin principle works fine
and the superoptimality rule stands like a backup
plan, although its failure is not excluded. Narrow-
ing a set of multiple efficient equilibria, i.e. re-
moving the uncertainty of equilibria partially by
achieving one of conditions (44), (46), (51), is an-
other advantage. Not going into mixed strategies is
a plain merit for benefits of fast practical realiza-
tion, especially of games with a few rounds [27,
33].

If payoffs are illogically scattered then the
metaequilibrium may be a way disadvantageous for
one or two players. This is a disadvantage common
for the known refinement concepts. Typical exam-
ples to this are games with payoff matrices (34)
and (63).

An unsolved issue concerns games with iden-
tical/symmetric payoffs having nonrefinable equi-
libria [7, 8, 20, 23, 34, 36]. An exemplary class of
such games was described in the section with for-
mulae (11)—(14). Both mirror-like symmetry and
cyclic symmetry make equilibria principally nonre-
finable, so the unsolved-ness here should be rather
treated as nonrefinability-ness.

Conclusions

The suggested Nash equilibria refinement in
trimatrix games has been developed on a base of
expanding the refinement approach for bimatrix
games. Exploiting the maximin, expanded to the
maximinimin principle, and superoptimality using
now double-summing, the main work for the re-
finement is off the maximinimin principle. The su-
peroptimality rule is involved if maximinimin fails
to produce just a single refined equilibrium now-
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called metaequilibrium. The aggregate efficiency of
such refinement, which is exemplarily visualized in
Fig. 4, seems satisfactory.

Theoretically, the contribution to the equilib-
ria refinement game theory field by the developed
approach still can be advanced for cases when the
uncertainty of equilibria is removed only partially,
that is when one of conditions (44), (46), (51) is
achieved. In the case when the approach totally
fails, that is when R = and (49) is true, the ad-
vancement (if this word is appropriate here) is

unlikely. Then, however, maximinimin and super-
optimality still can be (additionally) applied over
some subsets of subsets in (16)—(18), (24)—(26),
(29)—(31). If it does not help, then a method of
approximate Nash equilibrium situations with pos-
sible concessions can be invoked [21, 32]. A future
equilibria refinement theory for finite noncoopera-
tive games, mentioned in [7], will use the smallest
possible concessions to refine equilibria nonrefin-
able by the known concepts.
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B.B. PomaHtok

YOOCKOHAJIEHHA EQEKTVBHUX PIBHOBAI HELLA B YACTUX CTPATETAX 3 ALUMKNIYHO-ACUMETPUYHUMW BUTPA-
WAMW Y TPUMATPUYHUX ITPAX 3A MAKCUMIHIMIHOM TA HAOONTUMAJIBHICTIO

Mpobnemartuka. Mpobrnema BnGOpy Mix edeKkTBHUMYK piBHOBaramy Hela BMpILYeTbCS 3aBASKW iX YAOCKOHANEHH0. ICHyoui
nigxoau 0 Takoro BOOCKOHANEHHS! HE rapaHTyloTb, Lo yAoCcKkoHaneHa edekTuBHa pisHoBara Hewa 6yae eguHoto. MpoTe HoBuiA nigxig
00 BAOCKOHANeHHs ePekTUBHMX piBHOBar Hewa B 4McTux cTpaterisx y 6iMaTpuyHux irpax, 3anponoHOBaHUI paHille, BUKOPUCTOBYE
npaBuUo MakcUMiHy i HaAOMTUMAanbHOCTI, SKi, NPMHaNMHI YaCTKOBO, yCyBalTb HEBU3HAYEHICTb pPiBHOBAT.

MeTa pocnigxeHHsi. MeTa cTaTTi — po3BMHYTM Lein niaxia Ans 6iMaTpuyHMX irop, NOWMPUBLLM AOr0 Ha TPUMATPUYHI irpu Ans
SIKOMOra KpaLloro yaockoHaneHHs epekTnBHMX piBHoBar Hewwa.

MeToauka peanisauii. [ponoHyeTbCA yaoCKOHaNeHHsA edeKTMBHMX piBHOBAar Hela Ans TpyMaTpuyHUX irop, sike 3acHoBaHe Ha
MOLUMPEHHI Niaxoay A0 Takoro BAOCKOHANEHHs1 Ans 6iMaTpuyHMX irop i3 BUKOPUCTaHHSIM MakCUMIiHIMiHY i HagonTumaneHocTi. Poarns-
0aloTbCs TiNbKW irpy 3 auMKNiYHO-aCUMETPUYHUMU TPINKaMu NnaTexis.

PesynbTatn gocnigxeHHs. Cepii imiTauii TpMMaTpyuyHKUX irop AaroTb 3MOry 3pobuT BUCHOBOK MPO Te, L0 B TOW Yac SiK YAOCKO-
HaneHHs1 NoTpibHe B NpubnuaHo mixx 33 i 65 % TprMaTpUYHUX irop, Ae rpaBui MaTb Big 4 40 12 YMCTUX cTpaTerii (Uel NokasHuK 36inb-
LIYeTbCA B Mipy 36iMnblUEHHS pO3Mipy rpu), BOHO MOBHICTIO BUKOHYETLCS Yy BUMMSAAI €AMHOT MeTapiBHOBarn y npubnuaHo mix 46 i 52 %
uMx BUNaakiB (Liel NoKasHWK 3MEHLLYETLCA 3i 36iNbLUIEHHAM pO3Mipy rpu), 3 BUKOPUCTAHHAM TiNlbkM MakCUMiHiMiHy, 6e3 npasuna Hagon-
TUManbHOCTI. BUKOPUCTOBYIOUM MaKCUMIH, MOLMPEHUIA 0 NPUHLIMMY MaKCUMIHIMIHY, i HAAONTUMAIbHICTb, O BUKOPUCTOBYE Tenep no-
OBiliHe NigCyMOBYBaHHS1, OCHOBHY pOBOTY 3 YAOCKOHAMNEHHSI BUKOHYE NPUHLMM MAKCUMIHIMIHY.

BucHoBKW. ANropuTM yAOCKOHarNeHHs 3a po3pobneHnM nigxofoM y TPUMATPUYHKX irpax Ayxe npocTui. BiH cknagaeTtbes 3 Yo-
TUPbOX y3aranbHEeHUX enemeHTiB. Xo4a NoBHWA NPOBan YAOCKOHANEHHS He BUKIIOYAETLCS, CyKynHa eeKTUBHICTb YCYHEHHSI HeBU3Ha-
YEHOCTi piBHOBAr 3a NPUHLMMIOM MaKCUMIHIMiHY i TpaBMOM HagONTUMAanbHOCTI € 3a40BINbHOLO.

Kntouyosi cnoBa: TpumaTtpuyHa rpa; eekTusHi pisHoBary Hewa; y4oCKOHaNeHHs; MakCMMIiHIMIH; NpaBuio HagonTUManbHOCTI.
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B.B. PomaHtok

YCOBEPLIEHCTBOBAHUE 3®®EKTVBHbLIX PABHOBECUA HELA B YACTbIX CTPATEMUAX C ALIMKIUYHO-ACUMMET-
PUYHLIMW BbINIPLILLAMW B TPUMATPUYHBIX UTPAX IO MAKCUMUHUMKHY 1 CBEPXOMTUMAIIBHOCTU

Mpo6nemartuka. Npobnema BbIGOpa Mexay 3aphEKTUBHBIMU paBHOBECUsIMUM Halla peluaeTcs nyTeM UX yCOBEPLUEHCTBOBAHMUSI.
CyLyecTBytoLime noaxodbl K TaKOMy YCOBEPLUEHCTBOBAHWUIO HE FrapaHTUPYIOT, YTO ycoBepLUeHCTBOBaHHOe adhdheKTUBHOe paBHOBECUE
Hawa 6yaeTt eAnHCTBEHHBIM. TeM He MeHee HOBbIV NOAXOA K YCOBEPLUEHCTBOBaHMIO 3hEKTUBHBIX paBHOBECUIA Hala B YMCTbIX CTpa-
Ternsax B OBMMaTpuYHbIX Urpax, NpeanoXeHHbIN npexae, UCnosb3yeT NpaBUno MakCMMMHA U CBEPXONTUMANbHOCTW, KOTOpbIE, NO Kpan-
Hell Mepe YaCTU4HO, YCTPaHSIOT HeonpeaeneHHOCTb PaBHOBECU.

Llenb uccnepoBanums. Lienb ctatbn — passutb 3TOT Noaxo ANst GBUMaTpUYHbIX Urp, pacnpocTpaHsis ero Ha TPUMaTPUYHBIE UTPbl
AN KaK MOXHO NyyLUero yCoBepLUEeHCTBOBaHUS 3pdeKTUBHbIX paBHoBecuin Hawwa.

MeToauka peanusauuu. MNpegnaraetca ycoBepLueHCTBOBaHNE adhdEKTUBHBIX paBHOBECU Helwa ans TpUMaTpUYHbIX Urp, Ko-
TOpOEe OCHOBAHO Ha pacnpoCTpaHeHuW noaxoda K TakoMy yCOBEPLUEHCTBOBaHUIO ANst GUMATPUYHBIX UIP C UCMONb30BaHUEM MaKCUMU-
HYMUWHA 1 CBEPXONTUManbHOCTU. PaccMaTprBatoTCa TOMbKO MIPbl C aUUKITMYHO-aCMMETPUYHBIMU TPOMKaMKy NraTexen.

Pe3ynbTatbl nccnegoBaHus. Cepuyt MMTaLMIA TPUMaTPUYHBIX UrP NO3BOMSIOT 3aKMIOYMThb TO, YTO B TO BPEMS KaK YCOBEpLLUEH-
cTBOBaHUWe TpebyeTcs B NpumepHO mexay 33 n 65 % TpuMaTpuyHbIX Urp, FAE UrPOKM MMELOT OT 4 A0 12 YNCTbIX CTpaTernn (3ToT noka-
3aTenb YBENUYMBAETCSA NO Mepe yBENMYeHUsi pasMepa Urpbl), OHO MOMHOCTBIO BbIMOMHAETCS B BUAE €AMHCTBEHHOrO MeTapaBHOBECUSI
B MpUMepHO Mexay 46 n 52 % atux crnyvaeB (3TOT noka3aTeflb YMEHbLUAeTCs C yBenu4eHuem pasMepa Wrpbl), C UCNoNb30BaHWEM
TONMbKO MakCUMUHUMUHA, 6e3 nNpaBuna cBepxonTUManbHOCTU. Micnonb3yst MakCYMWH, PacnpoCTpaHeHHbIR A0 NPUHLMNE MaKCUMUHUMU-
Ha, U CBEpPXONTMManbHOCTb, UCMOSb3YHIOLLYI0 TENepb ABONHOE CYMMMPOBAHNE, OCHOBHYIO paboTy Mo yCOBEPLUEHCTBOBAHMIO BbIMOSHAET
NPUHLMM MaKCUMUHUMUHA.

BbiBoAbl. ANropUTM ycOBEpPLLEHCTBOBaHMS MO pa3paboTaHHOMY noaxody B TPUMATPUYHBIX Urpax oveHb NpocT. OH COCTOUT u3
yeTblpex 0606LLEHHbIX 3NIEMEHTOB. XOTS MOJHbIVM NPOBar yCOBEPLUEHCTBOBAHMSA HE UCKITIOYaEeTCs, COBOKYMNHas 3 eKTMBHOCTb yCTpa-
HeHWs1 HeonpeaeneHHOCTN PaBHOBECUIA MO NPUHLMMY MaKCUMUHUMUHA U NMPaBuiy CBEPXONTUMAanbHOCTU NpeAcTaBseTcs yaoBneTBo-
pUTENbHOW.

KnioueBble crnoBa: TpumaTpuyHas urpa; addekTuBHble paBHoBecus Helwa; ycoBepLIeHCTBOBaHNE; MakKCUMUHUMUH; NpaBUIo
cBepxonTnuMaribHOCTHU.
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