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RASTERIZATION METHOD FOR VOXEL MODEL CUTTING

Background. The analysis of voxel dataset cuts is a widespread task in computer graphics applications. A comprehen-
sive study of volume image cuts enables deeper learning of the structure of an object, which is visualized, as well as
getting a clear view of the organization of its components. Very often, there is a need to investigate an internal struc-
ture of the object, and in this case, researchers can be more interested in certain parts of the model, in particular, in
cuts of voxel data.

Objective. The objective of the research is to develop a rasterization method which enables obtaining cuts of voxel
datasets at arbitrary angles. The method should use only integer arithmetic and minimize the number of calculations.
Methods. The essence of the method is to rasterize the cutting plane by parallel transferring of master-line fragments
along the base-line, as it is proposed in the weaving algorithms of rasterization. To rasterize both types of lines, it is
proposed to use the Bresenham's line algorithm. The developed method consists of two stages: the initialization stage,
in which both the master-line is rasterized and boundaries of rasterization fragments are found, and the main stage,
when rasterization of the master-line fragments is performed within the boundaries found on the initialization stage.
Results. The developed method uses only integer arithmetic and minimizes the number of calculations in the rasteri-
zation cycles of master-line fragments which makes the use of the method sufficiently effective for rasterization of
sections of voxel models.

Conclusions. The developed method can be used in various applications where three-dimensional images are used, in-
cluding medical images, three-dimensional visualization in scientific applications, multimedia and mulsemedia sys-

tems.
Keywords: voxel model; rasterization; computer graphics.

Introduction

The analysis of voxel dataset cuts is a wide-
spread task in computer graphics applications [1—
4]. A comprehensive study of volume image cuts
enables deeper learning of the structure of an ob-
ject, which is visualized, as well as getting a clear
view of the organization of its components. Very
often, there is a need to investigate an internal
structure of the object, and in this case, researchers
can be more interested in certain parts of the
model, in particular, in cuts of voxel data. A cut is
a set of voxels which belong to a given plane of the
cut or reproduce it as accurately as possible. Based
on the features of the voxel data models, a method
of cutting depends on an angle at which this cut is
made. Since the voxel model is a three-dimensional
array of data, the most trivial cases for rasterization
of the cut correspond to angles multiple of 90°. At
the same time, special methods of rasterization are
necessary for cutting at arbitrary angles.

Such methods differ in approaches used to
determine a corresponding set of voxels represent-
ing the cutting plane.

Thus, in [5, 6], a scan-conversion algorithm
to rasterize polygons is proposed. This algorithm is
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based on the principle of scanline-rasterization [7]
in two-dimensional space and was extended for the
usage in three-dimensional space. This algorithm
can be used to construct cuts of the voxel model.
The main idea of this approach is to rasterize a
contour of the polygon (i.e. a contour of the cut)
and then gradually fill it rasterizing the parallel
lines connecting pairs of opposite points of the
contour.

Another approach which can be applied to
rasterization of a voxel model cut is based on the
usage of weaving techniques. The basic idea is that
one rasterized line (master-line) is copied along the
other rasterized line (base-line) with a certain shift.
Thus, a rasterization of the plane which contains
the master-line and the base-line will be obtained.
One of the algorithms which use such technique is
an exact weaving rasterization algorithm [8], the
use of which allows obtaining a fairly accurate rep-
resentation of the voxel model cut. In this case,
the number of computations is optimized by calcu-
lating special chains for the line segments that
form the cutting plane [9]. It is proved that such
chains have a certain periodicity, and therefore, for
rasterization of the plane it is enough to compute
such chains and then copy them to cover the sur-
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face of the plane. It allows to reduce the number
of necessary calculations for rasterization of the
entire plane.

There are also methods which allow to make
cuts where voxels completely cover the cutting
plane [10]. Such cuts consist of all voxels which
intersect the given plane (it is a requirement in
some cases) but the thickness of such cut may be
greater than one voxel.

The analysis of these methods and algorithms
allows us to consider the weaving algorithms as the
most promising ones.

Although these methods are intended to solve
the same problem, results of the cuts rasterization
may differ. Different requirements such as cut ac-
curacy, cut thickness, voxels connectivity, etc. may
be set to a voxel model cutting. Accordingly, the
choice of a rasterization method should be done
depending on a particular case.

Problem Statement

The objective of the research is to develop a
rasterization method which enables obtaining cuts
of voxel datasets at arbitrary angles. The method
should use only integer arithmetic and minimize
the number of calculations.

Basic Definitions

A voxel is a part of a discrete space with a
certain value. In the context of this paper, a voxel
is considered as a unit cube with coordinates in a
discrete space.

It is assumed that a voxel model is a collection
of voxels which mutually touch faces. Together
they form a three-dimensional structure which is a
parallelepiped. In this structure there are no cavi-
ties, that is, each facet of the internal voxel
touches the faces of the neighbouring voxels. The
model has an integer length, height, and width.

Every voxel in the considered model has inte-
ger coordinates:

x=0.L-1,
y=0..H-1,
z=0..W-1

where L is a model length, H is a model height,
and W is a model width, respectively.

The origin of the rectangular coordinate sys-
tem, in which the model is considered, coincides

with a position of the voxel having coordinates
(0,0,0). The edges of the model belong to the

planes Oxy, Oxz, Oyz.
A voxel dataset cut rasterization is a process of

finding all voxels which form the desired cutting
plane.

Weaving Algorithms

The weaving algorithms for voxel model
rasterization are a family of algorithms which fol-
low the principle of weaving technology [11].

Let us assume that it is necessary to perform a
rasterization of a certain area of the plane. Accord-
ing to this technology, in order to perform such
rasterization, two non-parallel lines which lay on
this plane must be selected. These lines are, so
called, master-line and base-line.

Rasterization of a given plane is achieved by
copying of the rasterized master-line along the
base-line. An example of such rasterization is
shown in Figure 1.

Let us consider that the master-line is given
by the segment AB, and the base-line is given by
the segment AC, and, thus, the point A4 is a
common point for both segments. Since the voxels
must have integer coordinates, the lines are con-
sidered in the discrete space, and, accordingly, the
coordinates of all points, obtained by rasterization,
will be integer. At first, a set of points which be-
long to the segment AB is obtained. Let it be a
certain set M. Then, while moving along the
points of the segment AC, the copying of the
points from the set M is performed on each step
with a certain shift. Thus, the rasterization of the
plane ABC is obtained.

y

Fig. 1. Rasterization with weaving algorithm
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Different types of weaving algorithms differ in
how the rasterization of the master-line and base-
line is performed. In general case, it is possible to
use rasterization algorithms for arbitrary curves in-
stead of using rasterization algorithms for lines. In
this case, the rasterization of a surface instead of a
flat plane will be fulfilled as a result. Within the
framework of this paper, a flat cut of the voxel
model is necessary, and algorithms for curves
rasterization are not considered.

Method Description

For the cutting plane, which is supposed to be
obtained by the method proposed in this paper, the
following requirements must be satisfied:

— voxels of the cutting plane must satisfy the
requirement of 26-connectivity, that is, they can
touch each other by faces, edges or vertices [12];

— the plane should be solid, that is, it should
not contain holes;

— the rasterized plane should not be dis-
torted.

This method should use only integer arithme-
tic in calculations to provide greater performance.
In this case, the rasterization of the cutting plane
cannot be considered as absolutely accurate but the
result would provide a good approximation which
may satisfy requirements of most cases.

A. Rasterization Process

The essence of the method is to rasterize the
cutting plane by parallel transferring of master-line
fragments along the base-line, as it is proposed in
the weaving algorithms of rasterization. To raster-
ize both types of lines, it is proposed to use the
Bresenham's line algorithm [13]. This algorithm is
a fast rasterization algorithm and allows to use only
integer arithmetic, which is one of the advantages
of such approach. Also, the Bresenham’s line algo-
rithm for a two-dimensional case can be exten-
ded for lines in three-dimensional space. However,
if the rasterization of the lines will be made on
planes, which are orthogonal to the coordinate
axes, then the original version of Bresenham’s line
algorithm can be used for a two-dimensional case.

The process of rasterization of a plane is a
process of finding coordinates of all voxels which
belong to this plane or considered as such. To im-
prove performance and increase the speed of
rasterization, it is necessary to minimize the num-
ber of computations. Usage of the Bresenham’s al-

gorithm will allow to get the rasterization of the
cut, using only integer operations. In addition,
such rasterization would be sufficiently accurate.
On every iteration of the Bresenham’s algorithm
for the master-line two coordinates for a single
voxel are found. The third coordinate is found on
the current iteration of the Bresenham’s algorithm
for the base-line, and this coordinate will be the
same for all of other voxels of the master-line.

In general case, the cut of the voxel model
may be represented by one of four shapes (a trian-
gle, a quad, a pentagon, or a hexagon) or by
one single point. All possible cases are shown in
Figure 2. The cutting plane, the rasterization of
which must be obtained, can be represented by the
general equation of the plane:

ax+by+cz+d=0

where a, b, ¢, and d are provided coefficients.

Fig. 2. Possible shapes of a cut

To simplify explanations and avoid the gener-
ality loss, it is assumed that the cutting plane is
given by three points, which lie on the axes Ox,
Oy, Oz and have integer coordinates. Also, for

simplicity, we assume that the coordinates of these
points cannot be negative. These points are marked
as P, P, P;. At first, let us consider the ap-

proach where the rasterization of the cut is made
by the Bresenham’s line algorithm without copying
of the master-line. Figure 3 shows an example of
such rasterization.

Let us consider that P P; is selected as a
master-line, and P, P, is selected as a base-line. At
each rasterization step of the segment P P, shifts
Ay and Az of coordinates y and z are accumu-
lated. At the same time, the current segment paral-
lel to P, Py is rasterized with the obtained values of

shifts.
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Fig. 3. The weaving rasterization based on Bresenham’s line al-
gorithm

Thus, when passing along P, P,, one rasteri-
zation of the line is performed on each step from

point P to point P;, where
Pl =P +(0,Ay,A2),

P/ =P, +(0,Ay,Az).

It should be noted that with this approach it
is necessary to check the boundaries of the voxel
model on every iteration in order not to exceed its
borders. As a result, a plane generated by sequen-
tial rasterization of parallel lines is obtained. This
plane rasterization satisfies the initial requirements.
However, it is obvious that this approach may be
greatly optimized. The master-line and the base-
line should be correctly selected, the master-line
should be rasterized only at once and checking of
the boundaries is unnecessary in case of using the
certain techniques. It is proposed that during one-
time rasterization of the master-line, left and right
boundaries are found and preserved for the further
rasterization of the necessary fragments of the mas-
ter-line. As it will be shown below, rasterization of
such fragments can be programmed in a simple
loop with a counter, where a single addition opera-
tion will be applied in the loop body. Thus, the
rasterization method described above will consist of
two stages: the initialization stage, in which both
the master-line is rasterized and boundaries of ras-
terization fragments are found, and the main stage,
when rasterization of the master-line fragments de-
termined by the found limits will be performed.

B. Initialization Stage

Let us assume that it is necessary to rasterize
the cut of the voxel model shown in Figure 4,

where the cut is presented in the form of a hexa-
gon, the voxel model is represented by a parallele-
piped, and the cutting plane is given by the points
P, P, P.

Before starting the cutting plane rasterization,
it is necessary to make an initialization step. At the
initialization stage, master-line and base-line are
selected, rasterization of the master-line is per-
formed, and boundaries for fragments of the mas-
ter-line are found. Master-line and base-line are
selected in the following way.

y

P,

, P X
Py

Fig. 4. A hexagonal cut

To choose a master-line, one of the segments
starting with P, P, or P;, must be taken. The

end point of the considered segment must be one
of the vertices of the cut. Both ends of the segment
must belong to one of the planes Oxy, Oxz or
Oyz . Since points P, P,, P; lay on the corre-
sponding coordinate axis, the angle between the
selected segment and the axis must be greater than
or equal to 45°. If selected angle is less than 45°, it
is possible that the rasterized fragments of the mas-
ter-line will overlap each other.

The selected segment cannot be shorter than
the smallest of the dimensions in the model, since
the parallel transfer of the rasterized fragment of
the master-line must cover the entire cutting plane.
Among the segments which satisfy the criteria de-
scribed above, it is necessary to select the shortest,
which will be accepted as a master-line.

The master-line should be selected as short as
possible, since it reduces the amount of computing
operations, as it will be shown below. Thus, let the
corresponding segment for the master-line be

PP .
The segment of the base-line will be in the
coordinate plane orthogonal to the plane of the
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master-line and its beginning will coincide with the
beginning of the segment of the master-line.

The base line must satisfy such conditions,
because otherwise the fragments of the master-line
will overlap when copied, as noted above. Thus,
the segment corresponding to the base line will be

P, P,. After choosing the master-line and the base-

line, we will rasterize the master-line using the
Brezhenham’s line algorithm. During the rasteriza-
tion of the master-line, boundaries A, and Ay of

the fragments, which will be copied when rasteriz-
ing the plane, are determined. A; and Ay are left
and right boundaries, respectively. Also, a chain of
coordinate shifts C is found.

The result of such rasterization of the mas-
ter-line defined from point £F(0,0,8) to point

P/(9,0,2) is presented in Figure 5. The figure

shows the master-line rasterized along the Ox axis
and filled arrays A;, Ap, and C with correspon-
ding values. C is an array of shifts, each element
of which is either 0 or 1, according to whether
there is a shift in the current iteration, or no.

The array A, , in this example, contains those
X coordinates which correspond to the shifts in
the chain C, and the A, array contains coordina-
tes x which correspond to the shifts which would
be obtained by rasterizing the master-line in the
opposite direction.

y |0 4 9 12 x

O__
Ay Ag
24 9|R=9]
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6] 6]
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| 3] | 3]
1 2
8 - o] o]
Z
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Fig. 5. Rasterization of the master-line

Also, at the initialization stage, values of L
and R variables are set. These variables define the
initial limits within which the first fragment of the
master line will be rasterized. The variable L corre-
sponds to the element A, , which first falls within

the boundary of the model, and the variable R is
the last element of A, .

C. Main Stage

After the initialization stage it is necessary to
perform the main stage, which is sequential rasteri-
zation of the fragments of the resulting master-line
along the base line. Base-line is also rasterized by
the Bresenham’s line algorithm.

The following formulas are used during the
fragment rasterization:

x.=i,i=L.R,

’
yr:yb!
Zr:Zr—l_Ci’

W, ifz,>W,
2y = .
" Nay ifz, <W

where z, and y, are coordinates of the current
voxel when base-line is rasterized and x,, y,, z,

are coordinates of the voxel from the fragment of
master-line.

The L and R variables determine the limits
in which the master-line fragment will be raster-
ized, and they are indices of the array C. Their
values are changing during the base-line rasteriza-
tion when z coordinate is changed. The variable
L will change its value to the previous one in the
array A; until it reaches the first element (zero-

element). The variable R will remain constant un-
til the following condition returns true:

2,28

where § is a number of shifts in the chain C.
Otherwise, its value will be changed in the same
way as variable L.

The process of the cutting plane rasterization
is shown in Figure 6.

Average time characteristics for both the exact
weaving algorithm and the developed algorithm are
given in the Table.

Table. Performance testing results

Algorithm Exact weaving Developed
stages algorithm algorithm
Initialization 0.004 ms 0.091 ms
Base stage 3.852 ms 3.426 ms
Total time: 3.856 ms 3.517 ms

It is obvious that the exact rasterization algo-
rithm has a significant advantage at the initializa-
tion stage, since the specificity of the method en-
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Fig. 6. Stapes of the cut rasterization

ables the use of low-level functions for fast mem-
ory copying. Instead, the algorithm proposed in
this paper can be more efficient during its main
stage execution of the rasterization by optimizing
the number of computations.

The exact rasterization algorithm usually re-
quires less memory than the algorithm proposed in
the paper, since in addition to maintaining the

chain of shifts, the boundaries of the master-line
fragments must be stored too.

The proposed rasterization method enables
obtaining cuts of voxel datasets at arbitrary angles.
The resulting slices have a unit thickness, and they
accurately reproduce the cutting plane.

The developed rasterization method uses only
integer arithmetic and minimizes the number of
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calculations in the rasterization cycles of master-
line fragments, what makes the use of the method
sufficiently effective for rasterization of sections of
voxel models.

Conclusions

Within the framework of this research, me-
thods and algorithms for rasterization of planes and
polygons in three-dimensional space were conside-
red and analysed. As a result, a method based on
weaving algorithms is proposed in this paper. This
method allows to obtain voxel model cuts with a
required thickness and at an arbitrary angle. The

resulting slices have a unit thickness and they ac-
curately reproduce the cutting plane. The deve-
loped method uses only integer arithmetic and
minimizes the number of calculations in the
rasterization cycles of master-line fragments, what
makes the use of the method sufficiently effective
for rasterization of sections of voxel models.

The developed method can be used in various
applications where three-dimensional images are
used, including medical images, three-dimensional
visualization in scientific applications, multimedia
and mulsemedia systems. The further work should
be focused on parallel realization of the main stage
algorithm of the developed method.
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METO[ PACTEPW3ALLIT 3PI3IB BOKCEJIbHUX MOLOENEWN

MpobnemaTtnka. AHania BOKCemnbHMX HAbOpPIB AaHMX € MOLUMPEHOI 3aadqelo B 3aCTOCYHKax KOMM'oTepHoi rpadiku. [loknagHe

OOChifXeHHs 3pi3iB 06’eMHMX 306paxeHb Aae 3mMory rnubLue BUBYMTU CTPYKTYpY 06’ekTa, Lo Bi3yani3yeTbCsl, @ TakoX OTpUMaTh uiTke
ysIBNEHHs1 Npo B6yaoBy MOro KOMMOHEHTIB. YacTo icHye notTpeba B A4ocniaxeHHi BHYTpPilLHbOT 6yaoBu 06’ekTa, B LbOMY BUNaAKy Aocniag-
HVKV MOXYTb ByTu 3auikaBneHi y BUBYEHHI MEBHMX 3pi3iB BOKCENbHOI MoAeri, 3pobneHunx nig AOBINbHUM KyTOM.

MeTa pocnigxeHHs. Po3pobut MmeToq pactepusalii, Skuid Aae 3Mory oTpMMyBaTy 3pi3n BOKCENbHUX HAbopiB AaHWX nig AoBiNb-

HUMK KyTamu. MeToa Mae BMKOPMCTOBYBATU MMLLE LiNIOYMCIIOBY apudMETUKY Ta 3abe3nedyBaT MiHiManbHY KifbKiCTb 064MCIEHb.

MeToguka peanisauii. B ocHOBI MeTody NexwuTb pacTtepusalis CiYHOT NOWUHM Yepes napanenbHUin NepeHoc MancTep-niHii y3-

noBx 6a30B0i NiHii, SK Le BUKOHYETBCS Y TKaLbKMX anropuTMax pactepusadii. [ns pactepusauii 060x MiHiii NPONoOHYETHCA BUKOPUCTO-
ByBaTu anroputm bpeseHxema ans niHin. PospobneHnit meToa BKMOYae ABa eTanu: eTan iHiuianisauii, Ha SKOMy pacTepu3yeTbCst Man-
CTep-MiHiA Ta 3HaXOAATbCA rpaHuLi pacTepusalii dparMeHTiB, Ta OCHOBHUWI eTan, Ha SKOMY BUKOHYETbCH pacTepu3auis dparMeHTiB
MalcTep-niHii, BU3Ha4YeHUX Ha eTani iHiuianizauyii.
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PesynbTatn pocnipkeHHA. 3anponoHOBaHUA MeTOA BMKOPUCTOBYE MULLE LiNOYNCIIOBY apudMETUKY 3 MiHIMAnbHOI KiMbKICTIO
obumncneHb y LmMknax pactepusauii doparMeHTiB MancTep-niHii, Wo pobuTb Oro BUKOPUCTaHHSA eeKTUBHUM Ans pacTtepu3sauii cekuin
BOKCENbHUX Moaenen.

BucHoBku. Po3pobnennii metoa Moxe 6yTV BUKOPUCTAHWUI Y Pi3HOMAHITHUX 3aCTOCYHKaX, A€ BUKOPUCTOBYIOTBCA TPUBUMIPHI 30-
BGpaxkeHHs1, 30KpeMa Meu4Hi, y cucteMax TPMBUMIPHOI Bidyanisauii B HAyKOBMUX 3aCTOCYHKaXx, MynbTUMELINHUX | MynbCeMeiiHNX cuc-
TEeMax.

Knro4yoBi cnoBa: BokcenbHa Mofenb; pactepuaalisi; KoMn'toTepHa rpadgika.

W.A. Onuka, E.C. Cynema, [.A. YepHbIx

METO[ PACTEPW3ALY CPE30B BOKCEJIbHbLIX MOLENEWN

Mpo6nemaTuka. AHann3 BOKCEMbHbIX HAOOPOB AaHHbIX ABMASETCS pacnpOCTPaHEHHOW 3adadelt B NPUIOXKEHUSIX KOMNbIOTEPHON
rpachukun. BcecTopoHHee nccnegoBaHne cpe3oB 06beMHbIX M306paXkeHUI NO3BONSET rNybxe U3y4nTb CTPYKTYpY OOBbeKTa, KOTOpbIN BU-
3yanuaupyeTtcs, a Takke Mony4uTb YeTkoe NpefcTaBrieHne O CTPOEHWU ero KOMMOHEHTOB. YacTo cyllecTByeT HeobxoAMMOCTb B UC-
CrnefoBaHMM BHYTPEHHEro cTpoeHnst obbekTa, B 9TOM cryyae uccregoBatenu MoryT ObiTb 3anHTEpecoBaHbl B M3y4YeHUW OnpeaeneH-
HbIX CPe30B BOKCEIIbHON MoAenNu, CAeNaHHbIX NoA NPOU3BOSbHbLIM YITIOM.

Llenb nccnepoBaHus. Paspabotate MeToA pactepusauum, KOTOpbI NO3BONSET NonyyaTb cpesbl BOKCENbHbIX HAboPOB AaHHbIX
NnoA Npou3BOINbHLIMY yrnamu. MeToa [OmKeH NCNoMb30BaTh TOMbKO LIENOYUCIIEHHYI0 apudMeTHKy 1 obecneunBaTb MUHUMAarbHOE KO-
NNMYECTBO BbIYUCMEHNIA.

MeToauka peanusaumun. B ocHoBe MeToAa NEXWT pacTepuaaums cekyLlei NnockocTy NyTem napannenbHoro nepeHoca Macrep-
NVHWK BAONb 6a30BON NMHMK, KaK 3TO AenaeTcsa B TKAaLKWUX anroputmax pactepusaumu. Ang pactepusaummn obenx nuHWin npeanaraeTcs
ncnonb3oBaTtk anroputm bpeseHxema AnA nuHuiA. Pa3paboTaHHbIi MeToq BKMoYaeT ABa dTana: atan vHMuManusauum, Ha KOTopoM
pacTepusyeTcsi MacTep-NIMHUS U HAaXOASTCA rpaHvLbl pactTepusaunm pparMeHToB, U OCHOBHOW 3Tar, Ha KOTOPOM BbINOMHSETCS pacTe-
pusaums parmeHToB MacTep-NiMHUKN, ONpeaerieHHbIX Ha 3Tane uHMuMan3auum.

Pe3ynbTaTbl uccnenoBanus. [peanoXeHHbIN MeTo NCMONb3yeT TOMbKO LIENOYNCIEHHYI0 apuPMeTHKY C MAUHMMAanbHBIM KO-
YeCTBOM BbIYMCIIEHUIA B LMKNax pactepusaumnm parMeHToB MacTep-nnHumM, YTo AenaeT ero Ncnonb3oBaHne adeKTUBHLIM ANs pac-
Tepusaummn CeKLUmnii BOKCENbHbIX Modenew.

BbiBoAbl. [peanoxeHHbIn MeTon MOXeT ObiTb MCMOMb30BaH B Pa3HOOOPa3HbIX NPUMOXEHUSX, TAe UCNONb3YIOTCS TPeXMepHble
n306paxkeHnsi, B YaCTHOCTW MeAWLUMHCKMEe, B CUCTEMax TPEXMEepHOW BU3yanusauum B HayYHbIX MPUIIOXKEHUSIX, MyNbTUMEOUAHbIX W
MynbCeMeAUHbIX CUCTEMaX.

KntoueBble cnoBa: BokCcenbHas Mogenb; pacTepu3alms; KoMnbloTepHas rpaduka.

PexomennoBana Pagoio pakynbrery Hanpiiinia no pemaxitii
MPUKIIATHOI MaTeMaTUKK 27 motoro 2018 poky
KIII im. Iropst Cikopcbkoro
IIpuitasita o my6ikarii
29 6epesns 2018 poky



