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PURE STRATEGY NASH EQUILIBRIA REFINEMENT IN BIMATRIX GAMES BY USING
DOMINATION EFFICIENCY ALONG WITH MAXIMIN AND THE SUPEROPTIMALITY RULE

Background. Multiple Nash equilibria bring a new problem of selecting amongst them but this problem is solved by
refining the equilibria. However, none of the existing refinements can guarantee a single refined Nash equilibrium. In
some games, Nash equilibria are nonrefinable.

Objective. For solving the nonrefinability problem of pure strategy Nash equilibria in bimatrix games, the goal is to
develop an algorithm which could facilitate in refining the equilibria as much further as possible.

Methods. A Nash equilibria refinement is suggested, which is based on the classical refinement by selecting only
efficient equilibria that dominate by their payoffs. The suggested refinement exploits maximin subsequently. The
superoptimality rule is involved if maximin fails to produce just a single refined equilibrium.

Results. An algorithm of using domination efficiency along with maximin and the superoptimality rule has been
developed for refining Nash equilibria in bimatrix games. The algorithm has 10 definite steps at which the refinement
is progressively accomplished. The developed concept of the equilibria refinement does not concern games with
payoff symmetry and mirror-like symmetry.

Conclusions. The suggested pure strategy Nash equilibria refinement is a contribution to the equilibria refinement
game theory field. The developed algorithm allows selecting amongst nonrefinable Nash equilibria in bimatrix games.
It partially removes the uncertainty of equilibria, without going into mixed strategies. There are only two negative
cases when the refinement fails. For a case when more than a single refined equilibrium is produced, the
superoptimality rule may be used for a player having multiple refined equilibrium strategies but the other player has

just a single refined equilibrium strategy.

Keywords: bimatrix game; Nash equilibria; refinement; domination efficiency; maximin; superoptimality rule.

Introduction

The Nash equilibrium is a solution concept of
a noncooperative game, in which each player is as-
sumed to know the equilibrium strategies of the
other players, and no player has anything to gain
by changing only one’s own strategy [1, 2]. Such a
solution is used in a lot of fields involved “tru-
ly-thinking” objects that interact by having a few
or more ways to do so. A classical example is
economic/bioecologic interaction amongst compe-
titors [3, 4].

A set of Nash equilibrium situations can be of
more than just a single situation included each
player’s Nash equilibrium strategy. Such set, if
non-singleton, is called Nash equilibria. Finding
these equilibria (in pure strategies) can be a very
hard task for infinite noncooperative games [1], but
it is a very easy routine in finite noncooperative
games, especially in bimatrix games [1, 5, 6].

As multiple Nash equilibria bring us a new
problem of selecting amongst them, this problem
is solved by refining the equilibria. Typically, such
a refinement refers to the selection of a subset
of Nash equilibria, and this subset is believed to
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include equilibria that are more plausible than
other equilibria. A great deal of the refinements
exists, e.g. [7], strong Nash equilibrium [8, 9],
Mertens-stable equilibrium [10], trembling hand
perfect equilibrium [11], proper equilibrium [12,
13], sequential equilibrium [14, 15], quasi-perfect
equilibrium [13, 16, 17]. However, none of them
can guarantee a single (refined) Nash equilibrium.
The refinement is turned on if Nash equilibria
are obtained in a game. Seemingly, if the players’
payoffs are the same for two or more Nash equilib-
ria then these equilibria should not be refined. For
instance, in a bimatrix game with payoff matrices

0 a 0 b
and by a>0, b>0, (1)
a 0 b 0

we have two Nash equilibria wherein the payoffs
remain the same — {a, b} (we assume that the ma-

trices are different). To stay at the equilibrium, the
players must select different pure strategies (by
their number-tags). And, as always, they will do
that independently (and simultaneously). Nonethe-
less, what if the players select simultaneously just
their first/second strategies? Surely, they will fall
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out of the equilibrium, and obtain zero payoffs.
Obviously, here any refinement is helpless. The
players in such a dyadic game are advised to get
into a mixture of their Nash equilibria, whereupon
the equilibria are selected randomly, with some
probability (in this example, the selection is
equiprobable).

A more sophisticated example is another dy-
adic game with different payoff matrices

0 ay (00 o
b))

by the same parameters, where we have two Nash
equilibria at the same strategies as previously ex-
ampled, but the payoffs are mirror-like — {a, b}

and {b, a} . It is naively clear that the probability of
a
a+

selecting the first pure strategy is

for both
b

the players, and is the probability of select-

a+b
ing their second pure strategies. But how knowing
these probabilities helps? If the game is not to be
repeated for at least a few tens of rounds [18, 19],
then even sticking to those probabilities will not
give us the expected payoffs, which are the same

b . For the non-repeatable
a+b

game, only Nash equilibria in pure strategies make
sense [1, 2, 6, 20, 21]. But should we refine them
here, as this mirror-like symmetry makes them ap-
parently nonrefinable?

The example above shows a case of the Nash
equilibria nonrefinability. No admissible decision
rule is applicable here because there is no domina-
tion amongst the players’ payoffs. Factually, those
exampled payoffs are themselves efficient (being
Pareto optimal). Thus the main problem is in the
nonrefinability by using the known standard
rules/concepts. This problem grows bigger in bima-
trix games of greater dimensions, e.g. a bimatrix
game with payoff matrices

here being equal to

5240 23
A= (akj)M =15 3 4 5
2 6 3 6 2
and
6 5
B= (bkj)3><6 =| 4 (3)
0 2

has four Nash equilibria, which are nonrefinable
by the known concepts. Indeed, if we denote

the players’ pure strategy sets by X = {xk}i=1 and
6 . .
Y ={y;},, then situations {x, y3}, {x;, yi},

{x3, ¥}, {x3, ys} are the equilibria, at which the
players’ payoffs are {4, 6}, {5, 4}, {6, 3}, {6, 3}, re-
spectively, without any domination amongst them.

When we have more than just two players, the
nonrefinability grows severer [1, 22, 23].

Problem statement

For solving the mentioned nonrefinability
problem of pure strategy Nash equilibria in bima-
trix games, the goal is to develop an algorithm
which could facilitate in refining the equilibria as
much further as possible. For achieving the goal,
the five tasks are to be accomplished:

1. To state denotations that are going to be
used.

2. To suggest an additional reasoning rule of
selecting amongst nonrefinable Nash equilibria in
bimatrix games.

3. To draw a scheme of an algorithm of using
that rule for refining Nash equilibria as much fur-
ther as possible.

4. To show illustratively how the algorithm
works on real-valued examples of bimatrix games
having Nash equilibria nonrefinable by the known
concepts.

5. To discuss the developed algorithm and
emphasize some unsolved issues, if any, in it.

The said task of showing illustratively the al-
gorithm’s work is aimed at understanding the proc-
ess of refinement better. Advantages of se-
lected/refined Nash equilibria should be seen
clearly. Disadvantages and issues ought to be ex-
plained as well.

Denotations

We consider a bimatrix game with real-valued
payoff matrices

A =(ay) ey and B =(by;) pron (4)

of the first and second players, whose sets of pure
strategies are X ={x;}//; and Y ={y}Y,,
M < N\{l}, N eN\{l}, respectively. The game is

assumed to be non-repeatable. If E ={z q}qQ:1 is a

set of pure strategy Nash equilibria in bimatrix
game (4), where Q < M -N (a number of the



44 KPI Science News 2018/3
pure strategy equilibria cannot exceed the total by subsets
number of situations in pure strategies), then _

X*:{xi} cX,c X and

2, =1 v} by ke K,c{l, M} and

o ()
jred,c{l,N}.

Recall that each element (5) of the Nash equilibria
set satisfies inequalities

a .<a . Vk=1, M

. . <
. .andbkj\b

kj kj

(6)

and Vj=1, N.
Thus subsets
X, = {xi*}i*gK* cX and Y, = {yl*}[*ej* cY ()

are formed. Therefore, for every element of set
X, = {xi*}i*eK g {1, Q} such that X.€2,, and
for every element of set Y, = {yl*}l*ej g e {@}
such that V€2, Note that F c X.xY, but

every element of set X,xY, is not necessarily
an equilibrium point, i.e. some pairs {xl_*, yl*}e

e X, xY, may not be the equilibria (see Fig. 1).

Fig. 1. An example sketch of the Nash equilibria set (highligh-
ted via dashed circles) and its relation to subsets (7)
over a player’s payoff matrix

A set of efficient Nash equilibria is [1, 11, 12,
24, 25]

E={z}5, cEby S<0, (8)

where

.= {xk**,yj**} for k" eK,..c K,c{l, M}

N

L )
and j"e J,.cJ,c{l, N}

i"eK,.
(10)

Y. = W, cYocY,

wherein for every element of set X, = {xi,,*}l_we X

s e {I,_S} such that X € Z,, and for every ele-

ment of set Y, = {yl**} e Ise{l, S} such that

J..
Yo €z,. Set (8) of efficient Nash equilibria is

only of those points (9), at which neither a couple
of inequalities

a..z=a

ey and bk*j* > bkwj** 11

ke
nor a couple of inequalities

A >0, 0
k' j

o =
ey andbkj/b

e (12)

is possible Vk* e K, and V j* e J, . Obviously,
E'c/\;*x);*cX*xY*.

Fig. 2 sketches out an example of these relations
amongst sets £, (7), (8), (10).

Z2%

Fig. 2. An example sketch of relations amongst sets £, (7), (8),
(10), where efficient Nash equilibria are via dashed rec-
tangles
The refinement is not needed if S=1. If

| X.|=1 then it is not needed also as set X, con-

tains an equilibrium strategy and the second player
will use such strategy y € Y. at which its payoff

is maximal. Analogously, if |);*| =1 then set Y,
contains an equilibrium strategy and the first player
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will use such strategy X € X. at which its payoff

is maximal.

Otherwise, before suggesting an additional
reasoning rule of selecting amongst nonrefinable
Nash equilibria in bimatrix games, a reduced bima-

trix game defined on product X . xf* is built. In
such a game, payoff matrices are

A = (émn)M**xNH and ﬁ = (l;mn)M**xN** (13)

where
M**le**|=|/\;*|>1a N**=|J**|=|f*|>la

and matrices (13) are the corresponding subma-

trices of (4) by a, =a, i by, = b, i with indi-

) M., C N
ces’ sets K..=1{k,}, 1 and J..={j } 7.
Appending the maximin and superoptimality rule

The refinement must be turned on if S >1.
In the being considered non-repeatable bimatrix
game, from the view of players that can “think
truly and rationally” [1, 7, 10, 14, 15, 26, 27], it is
best to use pure strategies from subsets (10). But
how can their actions guarantee an appropriate re-
sult? Remember the maximin rule that is designed
for such cases [1, 19]. Thus, using strategies from
subsets

X** = {xk;’}k;‘e[(***
- in a X.cX.cX (14
arg kajrz’lnill)j(M** {n_l’lj{ll** amn} cX.cX,.cX (14
and
Y. = {yl;}l;eJM
=arg max { min an}cf*cY*cY (15)
y]”, n=l, N,. | m=1
guarantees for players their maximin payoffs
a,= max_ { min a (16)
m=1, M., | n=1, N,, "™
and
b, = max { min b (17)
n=l, N,, | m=1, M,. ™"

in any situation. Note that, however, not all situa-
tions in set X,. xY.. are efficient Nash equilibria.

Moreover, this set may not contain any Nash equi-
libria.
Now, make a denotation LE = X..xY,.. Ifset
Py % 58
Ry =L, NE={X..xY.}N{Z} (18)
is nonempty then it contains the refined Nash
equilibria. In particular, if set (18) contains just a

single element (an efficient Nash equilibrium),
then the refinement is done. If RE = or

|R El >1 then the superoptimality rule originally

introduced for distinguishing optimal strategies in
matrix games (see [28, 29]) can be applied.
If set R 5= & then using strategies from sub-

sets (14) and (15) involves players into non-
stability provoking them to search new pure strate-
gies beyond these subsets for every game round (as
there is no a single equilibrium point). In such a
case, one of the best actions is to use strategies
from subsets

Kow= g

=

ok

max{ &mn}cf*cX*cX (19)

=arg
Xp m=1, M., 1

S
Il

and

Ve =),

M., R
=arg max{ bm”}cY*cY*cY (20)
1

Vi 0=l Now | o

that guarantee for players their best payoffs under
uncertainty of efficient equilibria in the bimatrix
subgame with payoff matrices (13).

For the case of [R,|>1 we need extra deno-

tations. Let RE c XpxY, by
P,y By R, xR e X, y R ey,

and

MR:|KR|:|XR|, NR:|JR|:|YR|>

with indices’ sets K ={k,}"'% and J,={j }"x.
If | X,|>1 then
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Ni
Xo= g, =are mM{Z }
CXRCX**CX*CX*CX. (21)
If [Y,|>1 then
* Mg
Yp= {yl;}[;elm =arg y[n,rr,,lfll,xjvk{mz_:lbkm/n }
cYycY.cY.cY.cY. (22)

Note that finding sets (21) and (22) does not guar-
antee that

XpxYdNR, 2D . (23)
Statement (23) is only assuredly true for cases
when either [X | =1 or [V, |=1.

An algorithm of using domination efficiency
along with maximin and the superoptimality
rule

Obviously, the algorithm cannot guarantee
that a single efficient equilibrium will remain after
the refinement [1, 2, 4, 8, 13, 15, 22, 24, 25, 30—
34]. It has offshoots after 11 dual cases depending
on what and how many elements sets £, (8), (10),
(18), X, Y, (19), (20), (21), (22) consist of

(Fig. 3). The algorithm has 10 definite steps at
which the refinement is progressively accom-
plished.

1. It starts with actually checking whether the
bimatrix game has equilibria or not.

2. If the game has a single Nash equilibrium
then no refinement is needed.

3. If there are multiple Nash equilibria then
set of efficient Nash equilibria is found.

4. No refinement is needed if a single efficient
equilibrium exists.

5. For multiple efficient Nash equilibria, the
refinement is done by maximizing the player’s
payoff when the other player has a single strategy
corresponding to those efficient equilibria.

6. If both the players have multiple strategies
corresponding to the efficient equilibria, a reduced
bimatrix game is built on the product of those
strategies.

7. Sets (14) and (15) are found (using the
maximin rule).

8. If an intersection of the product of these
sets and the efficient equilibria set is empty then

sets (19) and (20) are found (using the superopti-
mality rule), whereupon refined equilibria are
searched in an intersection of the product of sets
(19) and (20) and the efficient equilibria set. If that
intersection is empty then the algorithm only rec-
ommends for the players their best strategies by the
superoptimality rule in sets (19) and (20), although
these strategies do not constitute an efficient equi-
librium. Otherwise, at least a refined efficient equi-
librium is constituted.

9. If an intersection of the product of sets
(14) and (15) and the efficient equilibria set is sin-
gleton then a single efficient Nash equilibrium is
found. Otherwise, when this intersection is of mul-
tiple elements, sets (21) and (22) are found. Then
the refinement is done by maximizing the player’s
payoff when the other player has a single strategy
that produces set (18).

10. If set (18) is produced by the players’ sets
both consisting of multiple strategies, then at least
a refined efficient equilibrium is found when an in-
tersection of the product of sets (21) and (22) and
set (18) is nonempty. If the intersection is empty
then the algorithm only recommends for the play-
ers their best strategies by the superoptimality rule
in sets (21) and (22), although these strategies do
not constitute an efficient equilibrium.

There are two negative cases when the re-
finement fails: if conditions

X x Vel NE =& (24)

and

{X;xY;}ﬂRE=® (25)
turn true. Note that conditions (24) and (25) ex-
clude each other. Moreover, even if case with (25)
happens, it does not mean that the refinement fail
is really total. Indeed, set (18) is not empty but it
still contains “too many equilibria”. Thus, owing

to that R ;< E, such a case may be treated as a

particular refinement — see an illustrative example
in Fig. 4. In this example, holding at usual denota-
tions of strategies,

RE = {{xz’ yl}’ {X6, y4}’ {X7, ylo}}

< E = {{-xla y5}s {xla yg}a {Xz, yl}s {X3, y4}a
{xg Y4l {7, ¥ (26)

that implies that a half of uncertainty in selecting
the efficient equilibria is removed. Thus, those six
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|F ind set £ (a set of Nash equilibria)|

True False
| No equilibria in this game |

ot

Build a reduced bimatrix
game on product X, x 7Y,

False True

Find set £ (a set of
efficient Nash equilibria)

True

A single Nash equilibrium exists, so
no refinement is needed in this game

False E' -1

!

True

A single efficient Nash equilibrium exists,
so no refinement is needed in this game

The first player has a single strategy corresponding
to S efficient equilibria, so refinement is done by
maximizing the second player’s payoff

!

Return

|Find sets X.. ) Y..
]

The second player has a single strategy

corresponding to S efficient equilibria, so refinement

is done by maximizing the first player’s payoff

|Find sets L., R; |

True False

E

True False

!

|Find sets X, Y,

False True

1

A single efficient Nash equilibrium
is found by maximin

Find sets X..., Y
by using the
superoptimality rule

{X***xﬁ**}ﬂgz®

True

1

y The first player has a single efficient

equilibrium strategy after maximin,

so refinement is done by maximizing
the second player’s payoff

False True

False

The second player has a single efficient
equilibrium strategy after maximin, so refinement
is done by maximizing the first player's payoff

A 4

The superoptimality rule only
recommends for players their best
strategies but they do not

constitute an efficient equilibrium

The superoptimality rule
recommends for players their best
strategies which constitute an
efficient equilibrium

s

:

47

!

Maximin does not give a single efficient equilibrium, so the
superoptimality rule only recommends for players their best
strategies but they do not constitute an efficient equilibrium

ot

Maximin does not give a single efficient
equilibrium, so the superoptimality rule
recommends for players their best strategies
which constitute an efficient equilibrium

Fig. 3. The algorithm of the Nash equilibria refinement
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Fig. 4. Screenshots of payoff matrices of a bimatrix 7 x 10-game showing strategies of sets (10) as stripes corresponding to efficient
equilibria highlighted bolder than the bold-highlighted non-efficient equilibria, and, after having reduced the game, strate-
gies of maximin sets (14) and (15) as stripes; sets X p and Y, along with the resulting singletons (21) and (22) are arrowed

efficient equilibria are partially refined here [12,
15, 17, 31, 33, 34].

Figure 4 may seem to represent some para-
doxical result wherein the resulting singletons (21)
and (22) give a situation {x,, y,} being even not

an equilibrium at all. In this situation, players ob-
tain equal but rather small payoffs {3, 3}. Might

that be treated as a demerit of the developed algo-
rithm? The answer is no, because nothing forces
players to use just strategies from sets (21) and (22)
when condition (23) fails. Amazingly enough, these
strategies remain the “recommended best” under
the uncertainty of the three situations in set
R, < E — see its inclusion (26).

In another example, of the game with payoff
matrices (3), where

5242
A=@,);,=|5 5 3 1|and
2.6 36

346 4
4 2 3 4
3303

ﬁ = (bmn)3><4 =

are payoff matrices in the corresponding reduced
game, a single efficient equilibrium is found by

maximin. Here, X..={x,x,} and Y. ={y, ys}.
Subsequently, R P = {x;, y5} by the payoffs {6,3}.

This is an example of the totally successful refine-
ment.

Discussion of advantages, disadvantages, and
issues

It is clear that the algorithm works if one of

the three following cases happens:
|[R.|<|E| by R, #D, (27)

or intersection (23) holds, or
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KXo x Vet NE =D (28)

An apparent advantage of the algorithm is in its
giving a possibility to keep refining even if R ;=9

(that is the maximin “fails”). Another advantage is
in partially removing the uncertainty of equilibria
by the superoptimality rule, without going into
mixed strategies [20, 21, 23, 30, 35, 36]. Disadvan-
tages are similar to those of the known refinement
concepts — if payoffs come too “illogical” (illogi-
cally scattered) then the result may be some kind
of frustration [1, 2, 4, 32, 34, 37, 38]. An example
to this is

9 4 7
A=(a,,)4s= "o
356
526
and
220
1 99
B=Cudes=| | 51
1 95
where

E={{x,y},{xp y,}}.

So, the game is reduced to matrices

A=@,),,=| | and B=@b,),,=|"
=(a = an = =
mn’ 2x2 0 8 mn’ 2x2 19

but maximin fails to give us an equilibrium — it
gives just situation {x,, y,} with such small payoffs
{4,2}. However, such an issue is resolved easily.

The second player’s second strategy in the reduced
game does non-strictly dominate its first strategy,
so the second player has no reason to use the first
strategy ever. This is why only strategy y, will be

clung to, and the first player understands that.
Eventually, the first player has no reason to try get
a payoff of 9 in situation {x,, y,}. Moreover, a

payoff distance between that situation and situation
{x,, y,} is only I for the first player. Here the re-

sult is to cling to situation {x,, y,} (both players

should select their second
doubts) and take payoffs {8, 9} .

An example of the game with payoff matrices

strategies without

A= (amn)4><3 =

& e =)
S N =
[\OJE N RN B}

and

B = (bmn)4><3 =

[ S )
AN O O W
O W N =

by
E = {{Xl, y1}7 {x1> yz}}

goes to the case where the second player uses such
strategy y,.. € Y, = {y;; ¥y, at which its payoff is

maximal. Both its payoffs are equal to 3, so the
superoptimality rule prompts to use just y,. Nev-

ertheless, it is easy to see that actually strategy y,
non-strictly dominates strategy y, making usage of
y, senseless. The factual domination leaves us with
a single equilibrium — situation {x,, y,} and the
corresponding payoffs {9, 3} . However, non-strictly

dominated strategies are not always to be thrown
away. For the illustrative example in Figure 4,
strategy y,, is non-strictly dominated by strategy

Yo - But situation {x,, y,,} is efficient and, if sin-

gleton Y ; had consisted of only strategy y,, in-
stead of strategy y,, this situation could have be-

come a single refined equilibrium. This implies that
throwing away dominated strategies must be done
very carefully (not to be confused with throwing
away strategies of dominated equilibria).

The developed concept of the equilibria re-
finement does not concern games with payoff
symmetry and mirror-like symmetry [39, 40]. Dy-
adic games with payoff matrices (1), (2), and simi-
lar ones [1, 2, 4], as well as bimatrix games and fi-
nite noncooperative games of more players with
identical/symmetric payoffs have Nash equilibria
that are nonrefinable ever.

Conclusions

The suggested Nash equilibria refinement,
based on the classical refinement by selecting only
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efficient equilibria that dominate by their payoffs,
exploits also maximin. The superoptimality rule is
subsequently used mainly in two cases when a
condition (24) or (25) turns true. In other words,
the superoptimality rule is involved if maximin fails
to produce just a single refined equilibrium. For a
case when it produces more than a single refined
equilibrium, the superoptimality rule may be used
for a player having multiple refined equilibrium
strategies but the other player has just a single re-
fined equilibrium strategy. Here, nonetheless, sim-
ple selection of a maximal payoff may substitute

the superoptimality rule if the payoffs of those
multiple refined equilibrium strategies are different.

The contribution to the equilibria refinement
game theory field can be advanced for cases when
the developed algorithm gives more than one re-
fined equilibrium [41, 42]. Besides, it can be at-
tached to approximate Nash equilibrium situations
with possible concessions [36, 43—45]. That all
should be subsequently expanded into an equilibria
refinement theory for finite noncooperative games
of any number of players.
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B.B. PomaHtok

YOOCKOHAJIEHHA PIBHOBAI HEWA B YACTUX CTPATETIAX Y BIMATPUYHUX ITPAX 3A BUKOPUCTAHHA EPEKTUB-
HOCTI AOMIHYBAHHA PA3OM I3 MAKCUMIHOM | NPABMINOM HAOONTUMANBHOCTI

Mpobnematnka. MHOXUHHI piBHOBarn Hewwa nopoaxyoTe HOBY npobnemy BMGOPY MiX HAMW, ane us npobrnema BupiLLYETbCS
YAOCKOHaNeHHsIM Takux piBHoBar. OfjHaK XOfeH 3 iCHYIUNX METOAIB YAOCKOHANEHHs He MOXe rapaHTyBaTh €AVHYy BOOCKOHaNeHy pis-
HoBary Hewa. Y geskux irpax piBHoBaru Helua He nignsiratoTb YAOCKOHAMNEHHIO.

MeTa pocnipxeHHsA. [Ina BupilleHHA NpobneMn HeMOXNMBOCTI BAOCKOHanNWTU piBHoBarM Helwa B 4yucTux cTpaTeriax y 6imat-
PUYHUX irpax HeobXiAHO PO3pOBUTK anropuTM, sIKMIA 61 sikomora GinbLue cnpusiB B yAOCKOHaNEHHI piBHOBaAr.

MeToaumka peanisauii. [ponoHyeTbCcsl MeTOA yOOCKOHANeHHs piBHOBar Helwa, 3aCHOBaHWI Ha KNacU4HOMY yAOCKOHaneHHi 3 Buai-
NEHHSAM TiNbkvM ePEKTUBHUX PIBHOBAr, AOMIHYOUMX 32 CBOIMM BurpallaMmu. 3ro4oM MpPOMOHOBaHUA MEeTo[, YAOCKOHaINEHHs1 BUKOPUCTOBYE
MakCUMiH. MpaBuno HagoNTUMAarnbHOCTI 3anMy4aeTbCs, KO MakCMMIH He Aa€E 3MOrM OTPUMATH BCbOro OAHY BAOCKOHANeHy piBHOBary.

Pe3ynbTaTtu pocnigxeHHs. [na ygockoHaneHHs piBHoBar Hewa B 6iMaTpuyHmx irpax po3pobneHo anroputMm i3 BUKOPUCTAHHAM
edeKTUBHOCTI JOMiHYBaHHS pa3oM i3 MakCMMIHOM i MPaBWoM HagoNTMManbHOCTI. ANropuTM cknagaetbes 3 10 KOHKPETHUX KPOKIB, Ha
AKUX NOCTYNOBO BMKOHYETLCSA YAOCKOHaneHHs. Po3pobneHa KoHuenuis yaocKoHaneHHs piBHOBAr He CTOCYETbCS irop i3 cumeTpieto abo
[O3epKarnbHOK CUMEeTpIelo BUrpaLwis.

BucHoBkuW. 3anponoHoBaHe yaoCKOHanNeHHs piBHOBar Hella B YNCTUX CTpaTerisax € BHECKOM B 00racTb YAOCKOHaNeHHs piBHOBar
y Teopii irop. Po3pobnenuit anroputm gae 3mory Bubupatu cepef pisHoBar Hella, LWo He nignsraTb yAOCKOHANEHH, B BiMaTpuyHmx
irpax. YacTkoBO BiH yCyBae HeBM3HAYeHICTb piBHOBar 6e3 nepexody Ha 3MillaHi cTpaTerii. ICHYlOTb BCbOro nuile ABa HEraTMBHWUX BU-
najKu, Konv yAOCKOHanNeHHs He BAaeTbes. [Ans BMnaaky, Konv BupobnseTbes Ginblue HiXX oAHa yAoCKoHaneHa piBHoBara, npaBuIio Ha-
OONTUMAanbHOCTI MOXe ByTW YXXUTO rpaBLEM, SIKUA Mae YMCTEHHI YOOCKOHamNeHi piBHOBaXHi cTpaTerii, a iHWWIA rpaBeLb Mae nuwe eaun-
HY YOOCKOHaneHy piBHOBaXKHy CTparerito.

KniouyoBi cnoBa: 6imatpuyHa rpa; piBHoBarn Hela; yaockoHaneHHs; ehekTMBHICTb JOMIHYBaHHS; MAaKCUMIiH; NPaBuUio HaJoNTu-
MarnbHOCTi.

B.B. PomaHtok

YCOBEPLWEHCTBOBAHVE PABHOBECWW HELLA B UWCTbIX CTPATEMMAX B BUMATPUYHbLIX UMPAX C UCMOMb30-
BAHVEM 39PEKTUBHOCTV AOMUHNPOBAHNA BMECTE C MAKCMWHOM W MPABUNOM CBEPXOMTUMAIIBHOCTU

Mpo6nemaTtuka. MHOXeCTBEHHbIE paBHOBecus Helwa nopoxagarT HOBYKO npobnemy Bblbopa mexay HMMK, HO 3Ta npobnema
peluaeTcs yCoBepLUEHCTBOBaHNEM Takux paBHoBecuin. OAHaKo HY OAWH M3 CYLLECTBYIOLLMX METOAOB YCOBEPLUEHCTBOBAHUSA HE MOXET
rapaHTupoBaTb €MHCTBEHHOE YCOBEpLUEHCTBOBaHHOe paBHoBecue Helwa. B HekoTopbix urpax paBHoBecus Helua He nognexar yco-
BEpLUEHCTBOBAHWIO.

Llenb nccnepoBanus. [ina pewweHus npobnembl HEBO3MOXHOCTU YCOBEPLLEHCTBOBATL paBHOBECUS Helua B YMCTbIX cTpaTernsx
B BMMaTpUYHbIX Urpax HeobxoamMmo pa3paboTaTbe anropuTM, KOTOPbIN Obl kak MOXHO GorbLue cnocobcTBoOBan B YCOBEPLUEHCTBOBaHUM
paBHOBECUI.

MeToauka peanusaumu. [pegnaraetca MeTo[ yCOBEPLUEHCTBOBAHUSA paBHOBECUI Helua, OCHOBaHHbLIN Ha KNacCU4ecKoM YyCo-
BEpLUEHCTBOBAHWNMN C BblAENeHneM TOMNbKo appeKTMBHBLIX paBHOBECUI, AOMUHUPYIOLLMX MO CBOUM BbiUrpbiaM. Bnocneacteum npea-
naraemblii METO[ YCOBEPLUEHCTBOBAHUS WUCMONb3yeT MakCUMWH. paBuno cBepXonTUManbHOCTW NPUBMNEKAeTCsl, eCnvi MakCUMWUH He
No3BONSET NOSyYNTb BCErO OHO YCOBEPLLUEHCTBOBAHHOE PaBHOBECHE.

Pe3ynbTaThl uccnenoBaHusA. [Ins ycoBepLUEHCTBOBaHMS paBHOBecwi Helua B GMMaTpuyHbIX urpax paspaboTaH anroputMm c
ncnonb3oBaHneM 3peKTMBHOCTU AOMUHUPOBAHUS BMECTE C MaKCMMUHOM WM MPaBWIIOM CBEPXONTUMArbHOCTA. ANTOPUTM COCTOUT U3
10 KOHKPETHbIX LUaroB, Ha KOTOPbIX MOCTEMNEHHO BbIMOMHAETCA yCoBepLueHCcTBOBaHMe. Pa3paboTaHHas KOHLENuMs yCoBEpLUEHCTBOBA-
HUS PaBHOBECUIA He KacaeTCs Urp C CUMMeTPUER Unu 3epkanbHOM CUMMETPUEN BbITPbILLEi.

BbiBoAbl. MpeanoxeHHoe ycoBepLUEHCTBOBaHWE paBHOBECUIM Hella B YUMCTbIX CcTpaTerusix siBnsieTcs BKnagom B obnacTtb yco-
BEPLUEHCTBOBaHWSA paBHOBECU B Teopun urp. PaspaboTaHHbI anroputm no3sonseT BbibMpaTe Cpeamn He NoAnexallnx yCoBepLIeHCT-
BOBaHWIO paBHoBecuii Helwa B GumaTpuyHbIx urpax. YacTmyHo OH yCTpaHsieT HeonpedeneHHOCTb paBHoBecU 6e3 nepexoada Ha cme-
WwaHHble cTpaTternn. CyLiecTByOT BCEro NuLlb ABa HEraTuBHbIX Cryyasl, KOr4a yCoBepLUEHCTBOBaHWE He yaaetcs. [insa cnyyas, koraa
npounssoanTcs 6ornee Yyem OOHO YCOBEpLUEHCTBOBAHHOE paBHOBECUE, MPaBUMNO CBEPXONTUMANbHOCTU MOXET ObiTb MPUMEHEHO Urpo-
KOM, MMeloLEeM MHOXECTBEHHbIe YCOBEpPLUEHCTBOBaHHbIE PaBHOBECHbIE CTpaTernu, a Apyro urpok obnagaer Nullb eAWHCTBEHHOW
yCOBEpPLUEHCTBOBAHHOW paBHOBECHOW CTpaTerven.

KnioueBble cnoBa: 6umaTpuyHasa urpa; paBHoBecus Hela; ycoBeplueHCTBOBaHME; 3pEKTVBHOCTb AOMUHUPOBAHUS; MaKCu-
MWH; NPaBWIIO CBEPXONTUMAnNbHOCTH.
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