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WIND TURBINE POWER CURVE EXPONENTIAL MODEL WITH DIFFERENTIABLE
CUT-IN AND CUT-OUT PARTS

Background. The main characteristic of a wind turbine is its power curve. Getting measurement data off powerful
wind turbines is a way harder than measuring characteristics of wind turbines for individual/home use. A yet signifi-
cant gap is that all wind turbines have a few similarities in their power curves but they do not have a formalized de-
scription, which could help in selecting better turbines fitting specific areas (without precise measurements in a vicin-
ity of cut-in and cut-out speeds).

Objective. As there is a straight lack of mathematical description of wind turbine power curves, the goal is to obtain a
model of such curves.

Methods. A power curve is of seven parts. Factual power curves remotely remind trapezia with curvilinear flanks. Be-
cause of inertia, the curvilinearity is severer for those wind turbines whose output power is greater. As blades of in-
dustrial wind turbines are too massive, their inertia makes those lag effects, that could be modeled by using natural
smoothness of power curves. For describing that smoothness along with the curvilinearity, we use two increasing and
two decreasing exponential functions for the flanks.

Results. A wind turbine power output function consists of two zero parts, one rated-out part, and the suggested four
exponential parts. The cut-in parts are described with two increasing exponential functions whose exponential growth
factors are equal. The cut-out parts are described with two decreasing exponential functions whose exponential de-
crease factors are equal also. Such equal factors ensure strong differentiability of the power curve within those parts.
Conclusions. The exponential model is for a general description of the wind turbine power curve. Having differenti-
able cut-in and cut-out parts, it suggests the “natural smoothing” that happens in reality due to highly-inertial wind
turbine blades. The model is not necessarily to be used to fit some experimental data, but rather for patterning power

curves.

Keywords: wind turbine; power curve; cut-in speed; cut-out speed; natural smoothness; exponential curve.

Introduction

Wind power is the most promising source of
renewable energy. It is produced by wind farms
consisting of wind turbines [1, 2]. The wind farm
productivity is mainly determined by characteristics
of those turbines imposed on wind statistics of an
area where the farm is built [1, 3, 4]. While the
wind statistics cannot be influenced and changed,
the wind turbine with better characteristics can be
selected for fitting the area wind statistics [5, 6].
Thus, before deploying a wind farm, the wind tur-
bine characteristics should be modeled [4, 5, 7, §].

The main characteristic of a wind turbine is
its power curve. This is a wind turbine power out-
put function w(s) that shows an amount of kilo-

watts/megawatts produced at a range of wind
speeds s. This range might be called active. When
a power curve is plotted, the wind speed changes
slowly, not abruptly. Acceleration of the wind
speed change (caused by wind gusts, blasts, hurri-
canes, etc.) badly influences on the power output,
but it has been studied less [9, 10]. As close to an
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ideal case, the power curve would be rectangular or
trapezoid having very steep flanks. The left flank,
where the output power starts off zero, appears at a
cut-in wind speed. The right flank, where the out-
put power drops down back to zero, appears at a
cut-out wind speed [1, 6]. Factual power curves
remotely remind trapezia with curvilinear flanks,
whereon the nominal (rated-out) power appears at
a speed greater than a cut-in speed, and the real
drop to zero (a wind turbine turn-off) appears at a
speed greater than a cut-out speed.

A few examples of power curves in [6] are of
industrial turbines. For those wind turbines whose
output power is greater, the left flank becomes
more gently sloping. Their power curves remind
trapezia less. And the right flanks become not so
steep at all. An explanation is the turbines of the
greater power are bigger, and their huger blades are
much massive and inertial, taking longer periods to
slow down and stop. Obviously, getting measure-
ment data off more powerful wind turbines is a
way harder than measuring characteristics of wind
turbines for individual/home use. All the more that



34 KPI Science News

2018/2

wind farms are not built of small turbines, whereas
individual/home (non-industrial) use does not re-
quire building wind farms.

A yet significant gap is that all wind turbines
have a few similarities in their power curves but
they do not have a formalized description, which
could help in selecting better turbines fitting spe-
cific areas (without precise measurements in a vi-
cinity of cut-in and cut-out speeds). Indeed, it
would be far easier to get a power curve knowing
just a rated-out power along with cut-in and cut-
out wind speeds. Then a whole wind farm is possi-
ble to be modeled for its power output depending
on wind statistics of a given area [3, 6].

However, one should be aware of the wind
power curve depends on the wind speed accele-
ration and turbulence [4, 10, 11]. The power curve
is locally distorted worse as the wind speed acce-
leration grows higher. Apparently, small accelera-
tions and turbulence always exist, whichever area
for the wind farm is chosen. But they are very spe-
cific for different areas. This is why the known ap-
proaches to modeling power curves being tied to
data of a given area are not correct for a general
use. For instance, the power curves in [6] repre-
sented officially in product descriptions will pretty
change for every turbine type on different areas.
The change will be more considerable for Vestas
V112-3.0 MW [2, 3, 10].

There are parametric and non-parametric tech-
niques in power curve modeling methodology [11,
12]. According to [11, 13], the models based on
the concept of power available in the wind, like the
probabilistic and polynomial models, do not give
accurate results. This is because of the fact that the
fraction of wind power that is converted to electri-
cal power depends on several other parameters like
rotational speed of the turbine, turbine blade pa-
rameters, and the efficiencies of the mechanical
transmission system and generator efficiency. The
models based exclusively on the shape of the power
curve, like the linearized segmented model and the
model with the Weibull’s parameters, perform
poorly because the performance of the wind tur-
bines with different design parameters and ratings
cannot be modeled using a single set of general
equations [11].

The modeling methods in which characteristic
equations are developed based on the actual power
curve of the wind turbine appear the best for wind
resource estimation and for identifying potential
wind farm sites/areas [4, 5, 11, 12]. This also aids
to make the right choice of turbines while the wind
farm is projected [6]. Nevertheless, the actual po-

wer curve requires long antecedent data on the
wind speed and turbine power. Thus, a power pre-
diction without the historic data should be based
on some generalizations, without tying to a definite
site/area. If a sizeable number of training and test-
ing data is available, then non-parametric tech-
niques based on data mining techniques and neural
networks perform well. The performance of the
wind turbine power curve modeled using four and
five parameter logistic expressions is reported to
outperform the linearized segmented model and
the models based on neural network, fuzzy logic
and data mining algorithms [9, 11, 13, 14]. Thus,
it is expected that such a outperformance shall ex-
ist for poorer initial and antecedent data.

Problem statement

As there is a straight lack of mathematical
description of wind turbine power curves in the
case of missing long antecedent data, the goal is to
obtain a model of such curves. Such a model shall
allow plotting a power curve without direct meas-
urements but only by giving a nominal power along
with a few crucial points (e.g., amounts of kilo-
watts/megawatts produced at cut-in and cut-out
wind speeds). For achieving the said goal, the three
tasks are to be accomplished:

1. To list those crucial points and initial data
that should be given before modeling.

2. Based on the list, to substantiate a consis-
tent generalized model of the wind turbine power
curve compatible with power curves of real tur-
bines.

3. To show how well the substantiated model
fits some real measurements.

The list of initial data is presumed to be a set
of input arguments for making the model. The said
compatibility with real turbines’ power curves im-
plies not only true fits, but smoothing the right
flank also, because that steepness must disappear
after zooming in. Within the item #3, a procedure
of how to fit the measurements will be explained.
After that, the suggested model shall be discussed
and a conclusion will be given with an outlook for
further research.

A set of input arguments for the wind turbine
power curve model

A power curve is of seven parts (see them in
the three examples for industrial turbines in Fig. 1
and in Fig. 2). Emphasizing the two zero-power
lines and the nominal power line is apparent. Both
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Fig. 1. Power curves (represented officially in product descriptions) of wind turbines Enercon E82 E2 (2.3 MW), Nordex N90/2500
(2.5 MW), Vestas V112-3.0 MW, bold points are those at which real measurements were conducted
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Fig. 2. A sketch of the wind turbine power curve with its emphasized parts

the flanks are divided into two parts. Ascending off
the zero and ascending up to the nominal power
are on the left flank (the cut-in parts). Descending
off the nominal power and descending down to the
zero are on the right flank (the cut-out parts).

It is well seen from Fig. 2 that the crucial
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Similarly, the fifth and sixth parts can be separated Wi (Seut-in) =0, (2)
by wind speed
5= Scut-out TS50 w Scut-in ¥ Srated-out _ Wrated-out (3)
= —2 . 1 2 2 s

This is very naive, but the most expedient.

While those crucial wind speeds may be unof- W, [SCut-in + Srated-out] _ Wrated-out ’ (4)
ficially changed for fitting the model best, the 2
nominal (rated-out) power w., .q.ou; 1S given fi-
xed. It is of the initial data wherein steepnesses for Wy (Stated-out) = Wrated-out - (5)

both flanks may be given as well.

An exponential model of the wind turbine power
curve

The wind turbine power at each wind speed is
influenced by a great deal of factors, both stochas-
tic and predetermined [2, 3, 7, 11, 13]. The curvi-
linearity of the power curve flanks is implicitly
formed in a similar way. That can be thought of as
it is an average of a stochastic process with a nor-
mal distribution. All the more that logistic func-
tions suit very accurately for the curvilinearity [4,
9, 11, 12, 14]. That is why the curvilinearity is go-
ing to be generally described with exponents.

Based on the list of crucial points and the
sketch in Figure 2, a wind turbine power output
function is stated implicitly as

S o+ S
. Pcut-in rated-out
Wl(s)’ S e |:Scut—in’ 2 :|’

+ srated—out -
2 >Prated-out |°

Scut-out (1)
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w
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0, s>s,

having six joint points

s ) Scut-in * Srated-out s s
cut-in? 2 > Prated-out > “cut-out >
Scut-out TS50
2 ) SO-

On the second and third parts of function (1) we
have:

As blades of industrial wind turbines are too mas-
sive, their inertia makes those lag effects, that
could be modeled by using natural smoothness of
power curves. For describing that smoothness, we
can obviously take two increasing exponential fun-
ctions:

wi(8) = (eXP((S = Seur-in) Feur-in) = DK (6)

by some exponential growth factor r_,,_;, and
w
w.(s) = —rated-out
2(5) >

+(1 _eXpE[Scut—in +;rated—out _sjrratcd—outh K2 (7)

by some exponential growth factor 7.,.q-ous-

Clearly, function (6) satisfies condition (2), and
function (7) satisfies condition (4). Constants K

and K, are found from conditions (3) and (5).
Plugging (3) into (6) gives us:
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cut-in rated-out
" ( 2 j
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- (CXP([ 2 Scut—inj

w
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chut-in]_lJKl_ D) s

whence
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2. (exp[srated—outz_ Scut-in . rcut—inj _ lj

and, subsequently,

K]Z

w
— ted-out
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rated-out

2-[6Xp(s ; Scut-in 'rcut—inj_lj
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X (exp((s_scut—in)rcut—in)_l)‘ (8)
Plugging (5) into (7) gives us:

Wiated-out

rated-out D)

N o+ S
cut-in rated-out
+[1 _eXP[( ) _Srated—out]

X rrated—outj} KZ = Wiated-out

wo(s

whence

Wrated-out

S )
cut-in rated-out
2(1 _exp( ) 'rrated—out]J

and, subsequently,

K, =

W2(S) — Wrated-out
2
Wrated-out

+

S =S
cut-in rated-out
2'(1_6)(]3[ 2 'rrated—outj]

x (1 _exp((scut-in +;rated-out _ sjrrated—outj]' (9)

On the fifth and sixth parts of function (1) we
have:

WS(Scut-out) = Wrated-out » (10)

" (scut-o;t + SOJ _ Wratezd—out , (11)
W, (Scut—ogt + SO] — Wratezd—out , (12)
wy(sy) =0. (13)

For these parts we can take two decreasing
exponential functions similar to (6) and (7):

W3(S) = Wiated-out
+ (1_eXp((s_scut—out)rcut—out))KS (14)

by some exponential decrease factor 7, ., and

Wiated-out

wy(s) = 7

T (exp((—s‘:““";t * % —sjroj—lJIQ (15)

by some exponential decrease factor r,. Clearly,

function (14) satisfies condition (10), and func-
tion (15) satisfies condition (12). Constants K,

and K, are found from conditions (11) and (13).
Plugging (11) into (14) gives us:
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W3( D) ] = Wrated-out

+ (1 —exp ((w — Scut—out]

w
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X rcut-outhK3 - P ’
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and, subsequently,
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WB(S) = Wiated-out
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X (1 - eXp((S - Scut-out)rcut-out)) :

+

(16)
And, finally, plugging (13) into (15) gives us:

w
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4(80) )
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and, subsequently,
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s +S dw,(s)
x| exp]| | 2cut=out * 70 _ ¢ |p |11, 17 —
( p([ 2 0 (17 ds
w - r
_ rated-out "rated-out
Factors Teut-in > Trated-out » Tcut-out» o MaY be -

theoretically given as the initial data. However,
their magnitudes are going to be constrained to a
property of strong differentiability.

Strong differentiability for the flanks’ proper
curvilinearity

For completing the “natural smoothing”, sec-
ond and third parts of function (1), and fifth and
sixth parts of this function should be differentiable
within intervals, on which they are defined (except,
probably, for endpoints of those intervals). There-
fore, equalities

dw,(s) _ dw,(s) (18)
ds S:Scul—i|1+sra(ed—oul dS s:scu[—in+sraled—0u(
2
and
dwy(s) _ 4w4(s) (19)
ds s:scul—oul+so ds S:Scu(—ou(+so
2

should hold. Equalities (18) and (19) are princi-
pally important for making the power curve flanks
smoothly/properly curvilinear.

For equality (18), the derivative of function
(8) is

dw,(s)
ds

w r

rated-out " ‘cut-in

2. [exp(srated—outz_ Scut-in . rcut-in] _ 1]

X exp((s - Scut—in)rcut-in) ’
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The derivative of function (9) is
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It is easy to see that values (20) and (21) can be
equal only when r, Then, indeed,

cut-in rated-out *
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For equality (19), the derivative of function
(16) is

dW3(S) _ Wated-out " Feut-out

ds Sy =S
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y exp(so - S;ut—out _,.cut_outj. (22)

The derivative of function (17) is

dW4(S) _ Wrated-out " 7o

ds 2.[exp(scut—0;t — 5 ,roj_l]

x exp((scut—o;t + SO _ S]”oj’

dwy(s)
ds

SO

s:scu(—ouI+S0

Wrated-out “ 70

B 2. [exp(scut—oilt — 5o . ,.OJ_ lj .

Obviously, values (20) and (21) can be equal only

(23)

when r,_,. =%, - Then, indeed,
dw,(s)
dS S=Scu1—out+50
Wrated-out " 70

2. (exp(scut—ost — 5 . roj _ 1]

CXp(SO _Séut—out "'0] - (5)

Sy — S ds
exp[ 0 cut-out .roj

X

s:scu(—oul+S0

2
Note that function (1), even with parts (8), (9),

(16)’ (17)’ by Feut-in = Trated-out and Feut-out = o> is
still not differentiable at points
Scut-in> Srated-out> Scut-out> S0- (24)

Nevertheless, leaps of the first derivative at each of
those points will be insignificant by appropriate
values r, i, and r,. All the more that differentia-
bility at points (24) has a very little impact on the
curvilinearity of the power curve flanks.

Fitting real measurements

If we have N measurements {v?z(sk)},’(v:1 of a
wind turbine power output, then let w(s) be a po-

lyline linking all those points. A theoretical power
curve w(s) having a set of arguments

A= {Scut—im Stated-out> Teut-in> Scut-out> S0 r(]} (25)

is adjusted to those measurements. In other words,
a curve

X .
w (s) earg min

W()EW, S, ui-in3 So

C]LZ[Scut-in;SO

| [Iw(s) - w(s)l|

~ min
W()eW,[Sy_ins SolcLa[Scye-ins Sol

| 0wt~ (s))2ds (26)

Scut-in

is found by a subspace

W2[scut-in; SO] - ]LZ[SCLII-il’l; SO]

consisting of functions (1) with parts (8), (9), (16),
(17)’ by Teut-in = Trated-out and T =1 where
set (25) is applied under the minimum in (26).
Function w*(s) in (26) is the best approximation
to w(s). It can be found easier in two stages. Ow-

ing to that the power output is constant on the in-
terval [s s parts

ut-out

rated-out> cut—out] ’

A
wéu't“_>in(s) earg

Wcut—in(s)EWZ[scut-in; Srated—out]CH‘Z [Scut—in; srated-out]

Srated-out

~ 2
(Wcut—in(s) - W(S)) ds (27)
Scut-in
and
(Ague) )
woon (s)earg _ min
cut-out Weut-out(S)EW, [Scut-outs So1=La [Seut-outs Sol
So )
J (Wcut—out(s) - ‘Z’(S)) ds (28)

Scul-out

are found separately/independently applying the
respective subsets

Ain = {scut-in’ Stated-out? rcut-in} (29)
and
Aout = {scut—out’ Sos rO} (30)

of set (25). Then
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0, S < S.uiin belonging to the functional subspace
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Fig. 3. Fitting a measured power curve of the wind turbine Enercon E82 E2 by s¢y¢_in = 3.6, Srated-out = 14.02 , 7eyein = 0.32,
Scut-out = 25.03 , 53 =2547, ry=4.16
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Fig. 4. Fitting a measured power curve of the wind turbine Nordex N90/2500 by sy in =1.21, Spated-out =16-2, Fcut-in = 0.59,
Scut-out = 24.95, 5¢=25.55, r,=13.8
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Figs. 3 and 4 show how exponential model (1)

with parts (8), (9), (16), (17), by 7. in=
= Frated-out AN Ty ou =79, fits the measured

power curves of wind turbines Enercon E82 E2
and Nordex N90/2500, where parameters (25) are
easily found by a looped search by a step 0.01
(such accuracy is sufficient). However, fitting at
cut-in and rated-out parts does not seem so good
everywhere (the right flank in Figure 3) because of
sharp changing of the power around the “corners”.
Consequently, finding a curve by (26) might have
been accompanied with an additional condition
of that leaps of the first derivative at each of po-
ints (24) be minimized.

For fitting more around the “corners”, expo-
nential growth/decrease factors may be taken dif-
+5

2

and w will not be the joint points. Nev-

Scut-in rated-out

ferent. Then, obviously, speeds

ertheless, the generalized model by those equal
factors is still consistent because it should rather be
“slower” around the “corners” due to probable
wind dynamics and turbulence (the plotted power
curves are static because their real measurements
were conducted while the wind speed was changed
in non-dynamic mode).

It is worth to notice that this is not about to
fit real measurements at all costs. While parameters
(25) are searched/evaluated with their correspond-
ing loops, where subsets (29) and (30) are evalu-
ated separately, a few versions for them may come
out. Then a parameter’s evaluation that enables
rounding the “corners” is accepted. Thus, evalua-

tions of speeds s, ;, and §_, .. Will be less than

their nominal magnitudes (if they are available),
and evaluations of speeds S .., and s, will be

greater than their nominal magnitudes (if they are
available). According to the said, the approxima-
tion in Figure 4 is more universal, unlike the ap-
proximation in Figure 3, which will work accu-
rately on areas with no wind gusts (and where the
wind speed changes very slowly).

Discussion

The exponential model reflects the sketch in
Figure 2, where the flanks are really overextended.
Such an overextension will exist due to the inertia
of the blades. Their inertia dramatically grows
when wind changes dynamically. Therefore, a

static representation of the power curve is substi-
tuted with the proposed model suggesting that the
strong differentiability is preferred to independently
measured states. Despite the non-differentiability at
points (24), the power curve exponential model
becomes very smooth if appropriate parameters
(25) are adjusted.

While adjusting, speeds s and s

cut-out
rated-out and S may

be increased. This leads to that these speeds will
differ from those ones declared by a wind turbine
manufacturer. However, it is not a demerit but just
a modifier.

An essential merit of the proposed model is
that its power curve’s natural smoothness is totally
consistent with the inertia. It concerns especially
industrial wind turbines. Eventually, the model al-
lows calculating more reliable amounts of the ex-
pected power output based on wind statistics.

cut-in
may be decreased. Speeds s

Conclusions

Exponential model (1) with parts (8), (9),
(16), (17), by r, =r and r

ut-in rated-out cut-out
for a general description of the wind turbine power
curve. It has differentiable cut-in and cut-out
parts. Unlike static power curves plotted mostly by
changing the wind speed non-dynamically, the
model suggests the “natural smoothing” that hap-
pens in reality due to highly-inertial blades (com-
pare the “natural smoothing” in Figure 2 to real-
but-static measurements in Figure 1).

If a researcher/projector of a wind farm wants
to select the best wind turbines under the known
wind statistics, then parameters (25) are varied
along with the nominal power until the expected
power of the wind farm reaches its maximum
(e.g., see [2, 4, 5, 7] by [6]). The corresponding
configuration of parameters (25) and W, is

=r0,is

ated-out
compared to the existing wind turbines, whereupon
a closest match is selected.

The research may be furthered with append-
ing the condition of that leaps of the first deriva-
tive at each of points (24) be minimized. For this,

= rrated-out and rcut-out =TI 0

will be canceled. One should remember, however,
that the model is not necessarily to be used to fit
some experimental data, but rather for patterning
power curves. Practically, this will do also when a
nominal power along with amounts of Kkilo-
watts/megawatts produced at cut-in and cut-out
wind speeds are given.

conventions of 7, .
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B.B. PomaHtok

OKCMNOHEHUMANBHAA MOJEJb KPMBOW MOLHOCTY BETPOBOW TYPBEUHBLI C OUOOEPEHLIMPYEMBIMUA YACTAMMU
HA PEXXMMAX BKINIOYEHNA M BBIKIMTKOYEHWA

Mpobnematnka. OCHOBHOWN XapakTepUCTUKON BETPOBON TypOWHbI ABNsieTCA kpvBas MOLWHOCTU. COop AaHHbIX U3MeEpeHui C
MOLLHBIX BETPOBbLIX TYPOUH SBNSIETCA HAMHOrO Goree CNoXHbIM, YEM M3MEPEHME XapakTepUCTUK BETPOBbIX TypOUH AN MHAMBMAYamNb-
HOro/AoMalLHero ucrnonb3oBaHusl. Eule oqHUM 3HauMTENbHBIM HE4OCTATKOM SIBMSIETCS TO, YTO BCE BETPOBbIE TYPOUHBLI UMEKOT HECKOMb-
KO CXOACTB B CBOMX KPMBbIX MOLLHOCTU, HO Y HUX HET hopmManv3oBaHHOrO OMNMCaHWsi, KOTOpoe MOrno 6bl MOMOYb B BbIOOpE MyuyLLmx
TYpOUWH, COOTBETCTBYIOLLUMX KOHKPETHBIM y4YacTkam (6e3 TOYHbIX M3MEePEHUIn B OKPECTHOCTM CKOPOCTEW PEXMMOB BKITHOYEHWUS U BbIKMHO-
yeHus).

Llenb nccnepoBaHus. [1OCKOMNbKYy OLYTUMO He XBaTaeT MaTeMaTU4ecKOro OnucaHus KPUBbIX MOLLHOCTM BETPOBbIX TYpOWH,
Lenblo paboThbl SBASETCS NonyvyeHne Moaenu Takux KpUebIX.

MeToauka peanusaumm. Kpreasi MOLLHOCTU COCTOUT 13 cEMU YacTel. akTuyeckne KpuBble MOLLHOCTY OTAANEHHO HANOMUHAKT
Tpaneuun ¢ KpUBONUHENHBIMU donaHramu. M3-3a nHepummn nx KpMBOMMHENHOCTb XyXe AN TeX BETPOBbIX TYPOUH, MOLLHOCTb KOTOPbIX
Bbllle. [lockonbKy nonacTy NPOMBILLNEHHBIX BETPOBLIX TYPOWH CRULLKOM MacCUBHBI, UX UHepUMsi co3paeT addekTbl 3anasabiBaHus,
4YTO MOrfo Obl BbITb CMOAENMPOBAHO C UCMNOMb30BAHMEM €CTECTBEHHOW MagKoCTU KPMBbIX MOLLHOCTU. [N onMcaHus 3TOn rmagkocTu
Hapsay C KPUBONMMHENHOCTLIO ANs NaHroB Mbl UCMONb3yeM ABe Bo3pacTaolme u ABe yobiBatoLmMe 3KCNOHeHUMarnbHbie yHKLNK.

Pe3ynbTathbl uccnegoBaHusA. OyHKLUUSI MOLLHOCTY BETPOBOW TYpOWHBI COCTOUT U3 ABYX HYNEeBbIX YacTew, OOHOW YacTu C HOMU-
HamnbHOW MOLLHOCTbLIO U NPeaSIOKEHHBIX YETbIPEX SKCMOHEHLMANbHbIX YacTel. YacTu pexuma BKIOYEHUS! ONUCLIBAOTCS ABYMSs BO3pac-
TaLWMMN 3KCMOHEHUMANbHBIMY PYHKUUSIMU, KO3PMULNEHTBI SKCMIOHEHLMANbHOrO pocTa KOTOPbIX PaBHbl. YacTu pexuma BbIKIMioYeHUs
OMNWCbIBAOTCA ABYMS YObIBAOLWMMMW SKCMOHEHUMANbHbIMU (OYHKLUMSIMU, KO3 DULIMEHTLI SKCMOHEHLMANBHOTO YObIBaHWS KOTOPbIX TaKXe
paBHbl. Takme paBHble KO3 durumeHTbl obecneunBatoT CUnbHY AnddepeHUnpyeMocTb KpMBOM MOLLHOCTU B Npedenax aTux YacTen.

BbiBoAbl. JKCMOHeHUManbHas Moaernb npeAHasHavyeHa Ans obLiero onvcaHus KpMBOW MOLLHOCTM BETPOBOM TypOuHbI. Vimes
OnddepeHUMpyeMbIe YacTu Ha PEXMMAaX BKIMHOYEHNS U BbIKMIOYEHUS], OHA NpeanaraeT UMEHHO TO “eCTECTBEHHOE CriaxuBaHue”, KoTo-
poe NpoucxXoauT B AeNCTBUTENBHOCTU Bnarogapst BbICOKOMHEPLIMOHHBLIM ONacTsiM BETPOBLIX TYpOUH. Takasi Mogenb MOXET UCNOMNb30-
BaTbCsl He 00sA3aTenbHO AnA MOATOHKA HEKOTOPbIX 3KCMEPUMEHTAanNbHbIX AaHHbIX, HO M Ans 00pa3LoBOro MOAENUPOBAHUST KPUBbIX
MOLLIHOCTW.

KnioueBble crnoBa: BeTpoBasi TypbuHa; KprMBasi MOLLHOCTU; CKOPOCTb Ha PEXMME BKITIOYEHWS!; CKOPOCTb Ha PEXMME BbIKIOYE-
HUSI; eCTECTBEHHAs rMagKoCTb; 9KCMOHEeHUManbHas KpuBasi.
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EKCMOHEHLJATIbBHA MOJENb KPUBOI MOTY>KHOCTI BITPOBOI TYPBIHM 3 AU®EPEHLINOBAHUMK YACTUHAMU HA
PEXXMMAX BKMIOYEHHA | BUKITIOYEHHA

MpobnemaTtnka. [0NIOBHOK XapakTepUCTUKOK BITPOBOI TYPOiHN € iT KpBa NOTYXXHOCTI. 36MPaHHA AaHWMX BUMIPIOBaHb 3 MOTYXXHUX
BiTPOBMX Typ6iH € HabaraTo CKnafHilLMM, HiXX BUMIpHOBAHHS XapakTepuUCTMK BITPOBUX TypbiH Ans iHAMBIQYyanbHOro/AoMaLlHbOro BUKO-
puctaHHs. LLe oguH 3Ha4yHU Heornik nonsirae y TOMy, LU0 BCi BiTPOBi TypbiHM MatoTb Kinlbka NOAibHOCTEN y CBOIX KPUBMX MOTYXHOCTI,
ane y HUX Hemae hopmari3oBaHoro onucy, Skui mMir 6 gonomorTu y BUbopi Kpawmx TypbiH, MPUCTOCOBaHMX A0 NEBHMX AINSHOK (6e3
TOYHWX BUMipIOBaHb B OKOIi LLUBUAKOCTEN PEXMMIB BKIIOYEHHS | BUKIIOYEHHS).

MeTa gocnigxeHHA. Ockinbky Big4yTHO HE BUCTa4ae MaTeMaTUYHOrO OMNMCY KPUBUX MOTYXXHOCTI BiTPOBUX TypbiH, MeTol poboTu
€ OTPUMaHHS MoZeni TaKMX KpUBUX.

MeToauka peanisauii. KpuBa noTyXHOCTi cknagaeTbcs i3 cemu YacTuH. PakTUYHI KpMBI NOTYXKHOCTI BigAaneHo HaragywoTb Tpa-
neuii 3 KPMBOMIHIMHUMK cbriaHramu. Yepes iHepLito X KPMBOMIHIMHICTb ripLia Ans TUX BiTPOBUX TypOiH, NOTYXHICTb SkmMx Buwa. OCKinbku
nonaTi NPOMMCIOBKX BITPOBUX Typ6iH 3aHaATO MacuBHiI, iX iHepLis Npu3BoAnTb A0 edeKTiB BiACTaBaHHs, WO MoXHa byno 6 amopento-
BaTu 3 BMKOPUCTAHHAM NPUPOAHOI rNaaKoCTi KpUBMX NOTYXXHOCTI. [ns onucy ui€ei rmagkocTi pasom 3i 3rafaHolo KpUBOMIHIMHICTIO Ans
dnaHris M1 BUKOPMCTOBYEMO Bi 3pOCTatovi Ta ABi cnagatodi eKCnoHeHuianbHi yHKUii.

PesynbTatn pocnimxeHHs. PyHKLiS NOTYXXHOCTI BiTPOBOI Typ6iHWN CKNagaeTbCA 3 ABOX HYNbOBMX YaCTUH, OOHIET YacTUHM 3 HO-
MiHaNbHO MOTYXXHICTIO Ta YOTUPBLOX 3aNPOMOHOBAaHUX EKCMOHeHLianbHUX YacTUH. YacTUHN pexuMy BKIIOYEHHS OMUCYIOTLCA ABOMA
3pOCTaYMMUN eKCMOHEHLUianbHUMK OYHKUIIMU, KOedILEHTN eKCNOHEHLanbHOrO POCTY SIKMX PiBHI. YaCTUHM pexnmy BUKIIOYEHHS OMu-
CYIOTbCS ABOMA CMaAatouMmn eKCroHeHUianbHMMN yHKLiSIMU, KoedilieHTV eKCNOoHeHLianbHOoro cnagy Skux TakoXx piBHi. Taki piBHI ko-
ediuieHTn 3a6e3nevyoTb CUnbHY AMdEPEHLINOBaHICTb KPMBOT NOTYXKHOCTI B MEXaX LMX YacTuH.

BucHoBkW. EkcnoHeHLUianbHa Mogdenb npusHayveHa Ans 3aranbHOro Onucy KpMBOI MOTYXXHOCTI BITPOBOi TypGiHu. Matoun ande-
PEHLI0BaHi YaCTMHM Ha peXunMax BKITIOYEHHS | BUKIIOYEHHS, BOHA NPOMOHYE came Te “npupofHe 3rnafXyBaHHs”, Lo BiaOyBaeTbCs B
OifCHOCTI 3aBASKM BUCOKOIHEPLiHUM nonaTsiM BiTpoBux TypbiH. Taka Modenb MoXe BUKOPUCTOBYBaTUCS He 06OB’sI3k0BO Ans nignaLu-
TyBaHHS AESKUX eKCNEPUMEHTamNbHUX AaHUX, ane 1 Anst 3pa3koBOro MOAESoBaHHS KPUBMX NOTYXHOCTI.

KniouoBi cnoBa: BiTpoBa TypbiHa; KpuBa MOTYXXHOCTI; LUBMAKICTb HA PEXMMI BKITHOYEHHS; LWUBUAKICTb HA PEXUMI BUKIHOYEHHS;
npupoAHa rMapkicTb; eKCnoHeHLianbHa KpyBa.
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