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METHODOLOGY OF MODELING AND FORECASTING
NONLINEAR PROCESSES IN FINANCES

Background. Most of the models of financial and economic processes are characterized by considerable computational
complexity, and construction of predictions of acceptable quality for the required time horizon — by considerable ef-
forts. Therefore, the development and implementation of effective tools for forecasting the modeling of financial and
economic processes are one of the actual and practically meaningful tasks. The paper deals with the modeling and
forecasting of nonlinear nonstationary processes in macroeconomics and finance using a methodology based on the
principles of system analysis such as hierarchical modeling, consideration of the influence of uncertainties, optimization
of the characteristics of models using complex criteria, structural and parametric adaptation. The application of the pro-
posed methodology will improve the quality of forecasting by studying the features of the analyzed process and adapting
models to new data, etc.

Objective. The purpose of this article is to develop a methodology for predictive modeling of nonstationary processes in
finance and macroeconomics using statistical data, as well as its implementation in the corresponding computer system.
Methods. The methodology is based on the technologies of preliminary processing of statistical data intended to elimi-
nate possible uncertainties, the use of correlation analysis to evaluate structure of the model and choice of methods for
estimating its parameters, calculating forecast estimates and generating alternative solutions. This allows us to objec-
tively evaluate the results obtained at each stage of solving the problem of modeling nonlinear nonstationary processes
in macroeconomics and finance. The paper proposes an original methodology for determining the structure of the
model and its implementation in the information system for decision support.

Results. Appropriate models were built for the selected financial and macroeconomic processes. High quality of the final
result of data analysis and forecasting is achieved due to implementation of evaluation of the results obtained using
statistical quality criteria at each stage of data processing, modeling and forecasting, and also due to the possibility of
adapting models to new data through analysis of statistical characteristics of the processes under study and application
of combined criteria for the adequacy of models and quality of estimates of forecasts, and the convenient presentation
of intermediate and final results.

Conclusions. The proposed methodology is used for forecasting modeling of some macroeconomic and financial pro-
cesses in Ukraine. The obtained results show that it can be successfully used to solve practical problems of constructing
models and prediction of nonlinear nonstationary processes under conditions of uncertainties of various types, which, as
a rule, have to be considered during modeling and forecasting on the basis of statistical data.

Keywords: nonlinear nonstationary process; uncertainties; mathematical modeling; forecasting; macroeconomic and finan-
cial processes.

Introduction

Most of the modern processes taking place in
economy of transition and finances today are non-
linear and nonstationary or at best piecewise linear
and stationary. Practically all the process analyzed pre-
viously exhibit trends of various order and/or their
variance is not constant within the time period stu-
died. The processes trends are stochastic or determi-
nistic dependently on the set of specific internal and
external factors influencing the processes under study,
and heteroscedasticity is practically inherent to all fi-
nancial process related to various prices evolution and
return forming, exchange rates, etc. [1—3]. Mathe-
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matical modeling and forecasting of the processes dy-
namics based on the use of statistical and/or experi-
mental data usually need to consider various kinds
of uncertainties related to the statistical data, structu-
re of the process (and consequently its model) under
study, parametric uncertainty, and uncertainties re-
levant to forecasts estimates. To identify and take
into consideration the uncertainties in relevant (al-
ready available and being developed) computational
algorithms, and improve this way quality of interme-
diate and the final results (processes evolution fore-
casts and the decisions based upon them) it is nec-
essary to analyze the reasons for the uncertainties to
appear, the consequences of their influence and to
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construct appropriate computational algorithms for
solving multiple related specific problems. Develop-
ment and application of the methodologies posses-
sing the necessary features mentioned is an impor-
tant task that is being solved nowadays by many re-
searchers [4, 5].

Today there exist methodologies developed for
studying nonlinear nonstationary processes (NNP) and
constructing mathematical models in various research
fields using statistical procedures and state space re-
presentation. Another approach to development mo-
dels for NNP is based upon intellectual data analysis
(IDA) techniques such as artificial neural networks,
the group method for data handling (GMDH) [5], and
Bayesian networks (both static and dynamic) [6, 7].
On the other side these methodologies need some re-
finement so that to produce better results regarding
models adequacy and quality of the forecasts based
upon them. The refinement may touch preliminary
data processing algorithms, aiming to improvement of
statistical characteristics of data, model structure and
parameter estimation procedures, as well as the fore-
cast estimates. A very important point regarding mo-
deling methodology development is hiring of appro-
priate sets of statistical quality criteria necessary to
monitor all stages of computations: data quality ana-
lysis, model adequacy estimation, and determining the
forecasts quality. Finally the quality criteria should
analyze alternative decisions (alternatives) based on the
forecasts generated. For example, in a case of com-
puting the alternatives using optimization procedu-
res popular quadratic criterion is used very often ta-
king into consideration input control energy (or other
equivalent of input control variables) and deviations
of the controlled system states from prescribed tra-
jectories [8, 9]. Many other quality criteria are avai-
lable or could be constructed additionally for suppor-
ting specific applications if necessary. The basic requi-
rements to them are easy interpretation and practi-
cal implementation, say in the frames of decision sup-
port systems that are very popular in the area of pro-
cess modeling, diagnostic, forecasting and control.

This study is directed towards improvement of
model constructing methodology, more specifically
it is touching upon data preparing techniques for mo-
del constructing, as well as model structure and pa-
rameter estimation using multiple computational pro-
cedures.

Problem Statement
The purpose of the study is as follows: (1) to

perform analysis and development of requirements to
the preliminary data processing algorithms (prepa-

ring of data for model constructing); (2) development
of the software system architecture for model con-
structing, process evolution forecasting for various
dynamic processes in economy and finances includ-
ing nonlinear and nonstationary ones; (3) identifi-
cation of some uncertainties relevant to model struc-
ture and parameters estimating, and selection of ma-
thematical techniques for minimizing influence of the
uncertainties identified; (4) application illustration of
the software developed to solving selected problems
of modeling and forecasting using actual statistical
data.

Requirements to the Modern Applied Software
Systems

Modern applied software systems for modeling
and forecasting (ASSMF) are rather complex multi-
functional (very often possibly distributed) highly de-
veloped computing systems with hierarchical archi-
tecture that corresponds to the nature of decision ma-
king by a human being. To make functionality of the
ASSMF maximum useful and convenient for users
of different levels (like engineering personnel and ma-
nagerial staff) they should satisfy some general requi-
rements. In short, the requirements to ASSMF are as
follows:

— hierarchical system architecture correspon-
ding to the natural procedures of data and knowledge
analysis and decision making by a human,;

— availability of model adaptation features ma-
king possible models (structure and parameters) adap-
tation to new data, and possible changes in the mo-
des of functioning of the system under study;

— application of optimization techniques (where
possible and necessary) aiming to obtain optimal state
and parameter estimates, and optimized forecast esti-
mates as well;

— identification of possible uncertainties and
availability of computational techniques directed to-
wards elimination or minimization of negative in-
fluence of the uncertainties detected;

— availability of several sets of statistical qua-
lity criteria for estimating quality of data, models,
forecasts, and decision alternatives, accordingly;

— functional completeness of the system pro-
viding to a user all necessary functions necessary for
computer-human interaction, and solving specific
problem statement and computing results represen-
tation in a convenient form;

— adaptation of the system to the needs and
preferences of a user, for example, to the ways of re-
presentation of intermediate and final results of com-
putations;
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— providing high speed of the system functio-
ning including implementation of parallel computing
algorithms where possible and necessary.

Appropriate satisfaction of all the requirements
to development of ASSMF provides good possibili-
ties for effective practical usage of the system develo-
ped and for enhancing its general behavioral effect
for specific applications in the area of model construc-
ting with statistical data and forecasting of the relevant
processes evolution for a given time horizon [5, 7, 9].

Coping with Possible Uncertainties

Practically all types of mathematical modeling
(using functional and structural approaches) usually
need to cope with various kinds of uncertainties asso-
ciated with data, structure of the process under study
and subsequently its model, parameters uncertainties,
and the forecasts quality.

Here we consider uncertainties as the factors
and events that influence negatively the whole pro-
cess of data collecting, processing and mathematical
model building, forecasting of processes evolution,
and generating of alternative managerial decisions.
They are practically always inherent to the most ac-
tual processes under study due to incompleteness or
inexactness of our knowledge regarding the objects
(systems) under study, incorrect selection or appli-
cation of computational procedures etc. The uncer-
tainties appear very often due to incompleteness of
available data (due to missing observations or short
samples), noisy measurements or they are invoked by
stochastic external disturbances with unknown proba-
bility distribution, poor estimates of model structure
or by a wrong selection of a model parameters esti-
mation procedure.

In many cases, a researcher has to cope with the
following generalized types of possible uncertainties:
structural, statistical, parametric, probabilistic and am-
plitude uncertainties. The structural uncertainties are
encountered in the cases when the structure of the
process under study (as well as its model) is only par-
tially known or not clearly defined. For example, in
a case when the functional approach to model con-
structing is applied usually we do not know exactly
structure of the system under study. It is determined
with appropriate model structure estimation techni-
ques such as correlation analysis, estimation of mu-
tual information, time lags estimation, testing for non-
linearity and nonstationarity using appropriate sta-
tistical tests, identification of external disturbances
types etc. The sequence of actions necessary for iden-
tification, processing and taking into consideration of
possible uncertainties is given below.

Identification of data uncertainties: missing and
extreme values, measurement errors, influence of exter-
nal random disturbances, and short samples.

Reduction of influence of the data uncertain-
ties using available or newly developed techniques
(missing values imputation, normalizing the data, di-
gital and optimal filtering of noisy data, outliers pro-
cessing, etc.).

Estimation of model structure and parameters
using available (collected) information, correlation
analysis methods, statistical tests, and appropriate pa-
rameter estimation methods.

Reduction of uncertainties of model structure
and its parameters hiring repeated estimation in a
loop until the model adequacy is acceptable. Several
alternative techniques are available for nonlinear mo-
dels parameter estimation.

Computing forecasts and reduction of forecasts
uncertainty thanks to the use of several alternative
methods and combination schemes.

The use of the forecasts for generating alterna-
tive decisions according to the problem statement.

All the tasks and procedures mentioned are sol-
ved successfully with appropriately designed and im-
plemented ASSMEF. As far as usually we have to pro-
cess stochastic data, application of available statisti-
cal techniques provides a possibility for approximate
estimation of a system (and its model) structure. First
of all, we apply correlation analysis techniques to se-
parate and multiple time series and appropriate sta-
tistical tests. To find “the best” model structure it is
recommended to apply adaptive estimation schemes
that provide automatic search in a definite selected
range of model structure parameters (type of distri-
bution, model order, time lags, nonlinearities and non-
stationarities). Very often the search is performed, for
example, in the class of regression type models with
the use of integrated criterion of the following type:

Vv (6,Dy)

SSE(0) U,
max SSE
Vv (6,Dy) — mein

=[1-R*+|1-0.5DW |+ a (1)

where 0 is a vector of model parameters; D, is sta-
tistical data in the form of time series (/N is a power
of time series used); R’ is a determination coefficient;
DW is Durbin—Watson statistic; o is adjustment coe-
fficient that could be selected by a user or searched
for automatically using optimization techniques; U is
Theil coefficient characterizing quality of forecasts;
SSE(0) is actual SSE for a model being constructed;
max SSE(0) is maximum possible value of SSE for
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a given application. If SSE(0) is greater than the va-
Iue of max SSE(0), then SSE(0) = max SSE(0). The
first three terms in right hand side of criterion (1)
characterize model adequacy, and Theil coefficient is
used to take into account forecasts quality. The com-
plex criterion (1) is minimized with parameter vec-
tors of candidate models being estimated. The adap-
tive estimation scheme also helps to minimize model
parameter uncertainties, first of all to get unbiased
estimates. New coming data is used to compute mo-
del parameter estimates with alternative techniques
that correspond to possible changes in the system un-
der study. The alternative parameter estimation tech-
niques include OLS, and nonlinear LS, maximum like-
lihood (ML), and Monte Carlo for Markov chains
(MCMC). Availability of the techniques mentioned
covers all possible special cases of nonlinear model
parameters estimation.

Testing for Linearity and Some Models for
Nonlinear Nonstationary Processes

The problem of testing the processes for linearity
(nonlinearity) is considered in many studies [10—16].
Usually combination of several tests helps to detect
existing nonlinearity and to select appropriate model
structure. To detect nonlinearity the following test
was applied:

— construct linear regression model for depen-
dent variable y(k) and right hand side (RHS) vector
w(k) using LS [11]:

y(k) = BT w(k) + u(k)

where w(k) = [1, y(k -1),..., y(k — p); xl(k),...,x,(k)]T
is a vector of measurements for dependent variable and
regressors; v(k) = [u(k —1),..., u(k —q)]” is a vector of
random variables; and u(k) = g (B, 0,w(k),v(k))e(k);
(k) is martingale process with the following statistical
characteristics: E[g(k)|I(k)] = 0, cov[e(k)|I(k)] = 2;
I(k) ={y(k - j), j>0; x(k—-1i), i >0} is available ob-
servation information;

— compute residuals of the model u(k) and the
sum of squared errors SSR,, for the model construc-
ted;

— construct regression model for u(k) with re-

gressors w(k), and compute sum of squared errors for
the model SSR;;
— compute the test statistics:

F(m N—}'l—m): SSRO_SSRl/m
’ SSR, /(N —n—m)

where n = [ + p + 1; m is dimension of parameter
vector 0; the value computed has F-distribution with
0 = 0. The use of F — statistics instead of y? test is
recommended for short samples.

When constructing mathematical models for time
series it is convenient to use proposed unified notion
of model structure which we define as follows:

S:{ra pamynadawal}

where r is model dimension (number of equations
that constitute a model); p is model order (maximum
order of differential or difference equation); m is a
number of independent variables in the right hand
side of model equation; » is a nonlinearity and its
type (nonlinearity in variables or in parameters); d is
output reaction delay time (or lag); w is stochastic ex-
ternal disturbance and its probability distribution; /
represents possible restrictions for variables and/or mo-
del parameters. All the elements of a model structure
are estimated with appropriate statistical tests and
correlation analysis procedures, such as correlation
matrix, autocorrelation function (ACF), partial ACF
(PACF), bi-correlations, and higher order correlation
functions.

Consider some types of models nonlinear in va-
riables that are widely used today. Some nonlinear
models result from studying econometric time series.
For example, nonlinear regression of the following type
was used to describe gross domestic product (GDP)
and tax income:

n(k) = ay +ayy (k —1) + b exp(y,(k))
+ayx; (k) X, (k) + €, (k),

N(k) = ¢y + ¢y, (k = 1) + by exp(y; (k))
+ X (K)x, (k) + &5 (k)

where y,(k) is logarithm of GDP; y,(k) is logarithm
of tax income; x,(k) — internal investments; x,(k)
external investments. Another structure that is used
often is generalized bilinear model:

P q
y(k) = ay + Y a;y(k —i)+ Y bv(k - j)
i =

+i ZS: ¢; Yk —i)yv(k — j) + (k)

i=l j=1

where p, g, m and s are positive numbers characteri-
zing model order. The model can also be represented
in state space form where the states are presented in
the form of a product of former innovations and vec-
tors of random coefficients [12].
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Some models of nonlinear processes result di-
rectly from economic theory and formally describe
specific financial or economic processes. They can
take into consideration possibilities for development
optimization methods for systems under study using
appropriate cost functional or utility function. One of
possible model structures is as follows:

y(k) = min (B7 w(k), 6" w(k)) + e(k) 2)

where estimate of dependent variable y(k) is deter-
mined as a smaller one of two possible values compu-
ted via alternative functions: B'w(k) or 67 w(k). If

“min” in the model (2) is replaced by another varia-
ble, say z(k-d), that could be an element of vector
w(k), though not equal one, then we get so called
switching model:

y(k) =BT w(k) + 6T w(k)F(z(k — d)) + e(k)
where

0if z(k —d) < c;

F(Z(k_d)={1 if 2k —d)>c:

¢ is some threshold value that is used for switching
from one model to another; d = 0, 1, 2, ... is dis-
crete delay time.

A scalar version of the model is called threshold
autoregression with two modes. It can be generalized
to the set of possible functioning modes using non-
linear function of the type:

1
1+ exp[—y(z(k —d) - c)]

This is a model of logistic smooth transition re-
gression (LSTR). The function F can also be used in
the form of probability density function (PDF). In
a scalar case the model will correspond to the expo-
nential smooth transition autoregressive (ESTAR)
model.

A convenient approach to modeling nonlinear
processes is based on the models that contain linear
and nonlinear components, or flexible models:

F(z(k -d)) = , v>0.

(k) = B 2k) + S oy (07 2(k) + ek) ()
il

where z(k) is a vector of time delayed values for de-
pendent variable y(k), as well as former and current
values of the explaining variables vector x(k) plus shift
constant. The first component of the model is linear,
and ¢,(x) is a set of functions that could include the
following components:

— power function ¢;(x) = x', where variable x

can be delayed in time value of y or some other va-
riable;

— trigonometric function ¢;(x) =sinx or ¢;(x) =
= COS X;

— equation (3) can be expanded with quadratic
function z’ (k)Az(k), that will result in a flexible

functional form;

— ¢;(x) =9(x), Vi, where @(x) is a link func-
tion, for example appropriate PDF or logistic func-
tion of the following type:

X)=——;
() 1 +exp(—x)
— ¢(x) can also be represented by appropriately
selected nonparametric function.
Some general class of nonlinear models is also
given by the form:

p
(k) =2 o; (x(k = D)y(k - /)
=1

+ux(k = 1)) + e(k) (4)

where y(k) is [n x 1] stochastic vector of dependent
variables; x(k) = [y(k), y(k — 1), ..., y(k —n + 1)] is
a vector of state variables dynamics of which is de-
scribed by the state space model:

x(k) = h(x(k - 1)) + F(x(k - 1))x(k = 1) + v(k). (5)

Equation (4) can also include the moving aver-
age members. It means that in this case to describe
selected process we use two models simultaneously
what may result in some difficulties with the model
structure estimation. Equation (5) is a state space model
that can be supplemented with the measurement equa-
tion. The elements of matrix F(-) could be linear func-

tions or low order polynomials. The models (4), (5)
can also contain the members that reflect availability
of long memory what takes place very often when we
study ecological, financial and economic processes.

In the process of constructing forecasting mo-
dels we build several candidates and select the best
one of them with a set of model adequacy statistics.
The following techniques are used to fight structural
uncertainties: improvement of model order (for exam-
ple, NAR(p) or NARMAX(p, ¢)) by applying adap-
tive approach in a loop to modeling with automatic
search for the “best” structure using complex statis-
tical adequacy criteria mentioned above; adaptive es-
timation of delay time (lag) and the type of data pro-
bability distribution with its parameters; describing
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detected process nonlinearities with alternative analy-
tical forms with subsequent estimation of model ade-
quacy and quality of the forecasts generated.

A wide subclass of nonlinear models is created
today by the models describing dynamics of conditio-
nal variance for heteroscedastic process (HSP). HSP
are nonlinear by definition as far as variance descrip-
tion is based on quadratic variables and functions. Po-
pularity of variance forecasts is explained by their wide
possibilities for practical applications such as follows:
volatility is a parameter used in stock trading systems
for supporting decisions regarding operations with
various type of stocks; variance characterizes evolu-
tion of prices for many market goods; there is no
engineering or medical diagnostic system that does
not use variance as a parameter incorporated in deci-
sion making rules. The simplest mathematical model
of conditional variance is autoregressive condition-
ally heteroscedastic (ARCH) equation of the form:

E [2(k+1)] = ay + o2 (k1)

+ 0,8 (k= 2) + ...+ o e’ (k —q) (6)

where &(k) is a stochastic part of equation describing

HSP under study. It can be estimated by hiring low or-
der autoregressive equation (such as AR(1) or AR(2))
for description of goal variable y(x) in LHS; E, (-) is
a symbol of conditional mathematical expectation
computed for specific moment of time k. Usually equ-
ation (6) does not allow compute acceptable results
of short term variance forecasting.

The structure of equation (6) was improved by in-
troducing another variable into right hand side (RHS)
as follows:

hs(k) = o + 3 0y 2k — i)+ S Bihg(k—1)  (7)
iml il

where sample conditional variance Ag(k) is compu-
ted as follows:

.
ki
1 2

hs(k) =—— 3. () - FsOF, k=23,..,N

-1 _
i1
2

where y¢(k) is sample mean computed for each win-

dow w; w is a size of moving window for computing
conditional variance which is usually selected as an
odd number for convenience. Equation (7) is genera-
lized ARCH (GARCH) which is usually much more
efficient for describing and short term forecasting con-
ditional variance (and volatility).

Very good results of short term volatility fore-
casting can be achieved with the exponential GARCH
(EGARCH) model that has the following structure:

loglh(k)] = ag + 3 0, %

i=1 -
2 ok-i) & .
+ZB \/h(T + 121: og[h(k —i)] + v(k).

This equation contains so called “standard” part
that takes into account the innovations |e(k)|, and

another part that takes into consideration sign of the
innovation. The values of ¢(k) are normalized by vo-
latility what leads to reduction of possible high values,
and the logarithm function is applied for smoothing
the volatility. Definitely there exists a wider set of con-
ditional variance models that need separate conside-
rations.

Processing Some Types of Stochastic Uncer-
tainties

Performing modeling of economic, financial and
ecological processes usually we don’t have enough
information about statistical characteristics (covarian-
ce matrices) of measurement errors and stochastic
external disturbances (so called state noise). To mini-
mize influence of these uncertainties on data quality
digital and optimal filtering techniques are applied.
Procedures for digital filters development are well
known, and we only have to determine pass-bands
and stop-bands. Optimal filters provide for a possi-
bility of simultaneous estimation of system states and
the covariance matrices though they require mathe-
matical models in state space form.

Generally optimal Kalman filter can solve the
following problems: generating optimal states, esti-
mation of non-measurable state vector components,
estimation of statistical parameters for the state and
measurement noise, short-term forecasting of state
variables. Here we hire nonlinear version of optimal
filter that uses approximate (after linearization) state
space model of processes and systems under study.
System state estimation via optimal filter is perfor-
med on the basis of discrete form system model re-
presented by two equations in state space as follows:

x(k+1) = ok + 1, k)x(k)
+ Tk + Du(k)+w(k), (8)
Zk+1) =Hk+Dx(k+1) + vik+1) )

where x(k) is n-dimensional vector of system states;
k=20, 1, 2, ... is discrete time; u(k) is m-dimen-
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sional vector of control variables; w(k) is n-dimen-
sional vector of external random disturbances; P (k, k)
is [# x n] matrix of system dynamics; I'(k+ 1) is [# x m]
matrix of control coefficients. The double argument
(k, k — 1) means that the variable or parameter is
computed at the moment k, but its value is based
on the previous data processing procedure including
moment (k— 1). Discrete time k and continuous time
t are linked via data sampling time 7.t = kT,. The
classic problem statement supposes that vector sequen-
ce of external disturbances w(k) is zero mean white
Gaussian noise with covariance matrix Q. In the mea-
surement equation (7) z(k) is a vector of measured
output variables; H (k + 1) is [r x n] observation mat-
rix; v(k) is r-dimensional vector of measurement er-
rors (noise) with covariance matrix R. The filter is con-
structed to compute optimal state vector x(k), in

conditions of influence of random external system dis-
turbances and measurement noise.

Here uncertainty arises due to unknown cova-
riance matrices Q and R. The problem is solved
with adaptive filter constructing that provides a possi-
bility for computing the estimates of Q and R simul-
taneously with state vector x. Another possibility is
in constructing separate algorithm for computing the
values of the covariance matrices mentioned. A con-
venient statistical data based algorithm for computing
the covariance matrices can be found for example
in [17]. The algorithm was successfully applied to esti-
mating the values of covariance matrices in many prac-
tical applications. The experiments showed that the va-
lues of estimates become stationary after about 20—25
of time sampling periods in a scalar case, though this
figure may increase substantially with the growth of
dimensionality of the model (8), (9).

In a case of hiring nonlinear models for the pro-
cesses description a discrete nonlinear transformed ver-
sion of Kalman filter was applied that also uses fun-
damental matrix A (-) of continuous time model [18].

Here the sequence of estimates {(k), X(k), and state
transition matrix are computed as follows:

x(k+1) = C(k) + AC(k)) C(k) T
+T,B(k + u(k +1),

-1
®(k+1,k) :{ - %A(X(k + 1))} {I+ %A(Q(k)},

Ck+1) = D(k+1,k)C(k)
+JT, @k +1,k)B(k + Du(k +1)

where A()) is fundamental matrix for continuous time
model; (k) is approximating estimate for x(k). The

prior covariance matrix of state estimates errors and
optimal matrix coefficient are computed in the fol-
lowing way:

T(k) = (T, ¥(k + Lk)B(k +1),
P(k +1,k)
=¥(k +1,k) Pk, k)¥T (k +1,k) + T(k)Q(k)T Tk),
K(k +1) = P(k + 1, k)H' [HP(k + 1, k)H” +R] ",
Ck+1L,k+1)
=Ck+1,k) + K(k+D)[z(k +1) — HE(k +1,k)].

Among other instruments for processing uncer-
tainties are fuzzy sets and logic, static and dynamic
Bayesian networks, appropriate types of conditional
probability distributions etc. Bayesian networks repre-
sent powerful probabilistic tools for modeling proc-
esses and systems with hiring statistical data, expert
estimates, information on PDFs for continuous and
discrete variables. They can cope successfully with pro-
babilistic and amplitude type uncertainties. Some un-
certainties such as missing observations, extreme va-
lues and high level jumps of stochastic origin are proc-
essed with appropriately selected known statistical
procedures. Existing data imputation procedures help
to complete the sets of data collected. For example,
very often missing measurements of time series could
be generated with correctly selected distributions or in
the form of short term forecasts. Processing of jumps
and extreme values helps with adjusting data non-sta-
tionarity and to estimate the probability distribution
functions for the stochastic processes under study.

Results and Discussion

The developed procedure for linear and nonli-
near model constructing using statistical data inclu-
des the steps given below.

1. Preliminary processing of data and expert es-
timates with application of data quality criteria such
as missing values counters, parameters of information
content (computing of variance, and number of deri-
vatives for approximating polynomials), power of sam-
ples. Filtering of data and imputation of missing va-
lues where necessary; estimation of non-measurable
components.

2. Application of statistical tests aiming to dis-
covering nonlinearity and nonstationarity; correlation
data analysis is giving the grounds for estimation of
model structure.

3. Estimation of candidate models structure
and their parameters. To reduce the influence of pos-
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sible parametric uncertainties three parameter esti-
mation techniques are applied: LS (NLS), maximum
likelihood (ML), and Markov chain Monte Carlo
(MCMC) procedures.

4. Application of model adequacy statistics and
selection of the “best” models. If model quality is not
acceptable we return to the step 2 to get more infor-
mation regarding the model structure and repeat the
procedures of structure and parameter estimation.

5. The model(s) selected is used for computing
forecasts that are analyzed with another set of quality
criteria. Among them are mean absolute percentage
error and Theil coefficient.

6. The final step is practical application of the
model constructed. If the model is not satisfactory
for practical usage the process of model constructing
is repeated with extra statistical data.

Very often uncertainties of model parameter esti-
mates such as bias and inconsistency result from low
informative data, or data do not correspond to selec-
ted type of distribution, what is required for correct
application of parameter estimation method. Such
situation may also take place in a case of multicolli-
nearity of independent variables and substantial in-
fluence of process nonlinearity that for some reason
has not been taken into account when model struc-
ture was estimated. When power (size) of data sam-
ple is not satisfactory for model construction it can
be expanded by special techniques, or Monte Carlo
simulation is hired, or special model constructing tech-
niques, such as GMDH, are applied. GMDH produ-
ces very often results of acceptable quality with short
samples. If data does not correspond to normal dis-
tribution, then ML technique could be used or appro-
priate MCMC procedures [10]. The last techniques
can be applied with quite acceptable computational
expenses when the number of parameters is not large.

Example 1. Consider the problem of modeling
return y(k) for a selected stock on the basis of month-
ly data including 300 observations. According to par-
tial autocorrelation function computed the model of
the process should include lags 1—3. Thus the biline-
ar model selected may look as follows:

yk)y=p+ayk-1 +a,ylk-2) + a;y(k -3)
+ (1+ Bk = 1)+ Byv(k =2) + Byv(k —3))-e(k)

where v(k) is moving average process; it was sugges-
ted that {e(k)} ~ N (0, 1). The model parameters

were estimated with conditional maximum likelihood:
y(k) =0.0117 + 0.173y(k —1) + 0.115y(k - 2)
—0.089y(k -3) + 0.077-(1.0 + 0.383v(k -1)
+0.103v(k —2) — 0.551v(k - 3))- e(k).

Adequacy of the model is rather high: R?=0.89,
DW = 1.92, with mean absolute percentage error for
one-step-ahead prediction on test sample: MAPE =
= 5.2 %. All parameter estimates are statistically sig-
nificant at the confidence level of 5 %.

The model for random process €(k) from the last

equation is as follows:

y(k) —0.0117 = 0.173y(k - 1)

—0.115y(k -2) + 0.089y(k - 3)
0.077-(1.0 + 0.383v(k - 1) ’

+0.103v(k —2) — 0.551v(k - 3))

&(k) =

where (k) = 0 for k < 3. The sample autocorrelation
function for the process &(k) shows that it does not

contain statistically significant correlations.
FExample 2. A set of models were developed for
forecasting direction of price evolution for some stocks.
As far as price evolution trajectories contain nonlinea-
rities of arbitrary form nonlinear models are needed
for description of the processes. One of possible mo-
del types is logistic regression. If at the moment of
time 7 + 1 the price is higher than at the moment ¢,
this growth is identified as “1”, and decrease of price
value is designated as “0”. As input variables (regres-
sors) for logistic regression were selected the following

values of Pivot Point indicator: S1, S2, S3, P, Rl, R2,
R3. The following forecasting model was constructed
for maximum price using statistical data:

)

x,(k) = -0.993 +1.604 - S1(k)
—0.649 - S2(k) + 0.363 - S3(k) + 0.355 - P(k)
—0.298 - RI(k) — 0.217 - R2(k) - 0.278 - R3(k).

Emax1 (xl) =

Threshold value of probability for logistic re-
gression was selected 0.29, in this case it minimizes
the first and second type errors. The error values were
18 % (first type), and 57 % (second type); the num-
ber of correctly forecasted directions of price evolu-
tion was 69.76 %.

For the minimum price the following model was
constructed:

A0

gmin(xz)ZW,

x,(k) = —0.139 +1.21- S1(k) - 0.979 - S2(k)
—0.472- S3(k) - 0.22 - P(k)
+0.423 - RI(k) + 0.577 - R2(k) - 0.01- R3(k).
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Threshold value of probability for logistic regres-
sion was selected 0.29. The error values were 21 %
(first type), and 63 % (second type); the number of
correctly forecasted directions of price evolution was
66.13 %.

Using the classification tree (CHAID algorithm)
for the maximum prices and threshold value 0.25 we
got the first type error 27 %, and the second type error
of about 50 %. The number of correctly forecasted di-
rections of the process development was about 68.95 %.
For the minimum prices the following results were
achieved: threshold value 0.31 we got the first type
error 26 %, and the second type error of about 62 %.
The number of correctly forecasted directions of the
process development was about 64.66 %.

To improve the forecasts quality logistic regres-
sion model and decision tree were extended with the
price forecasts, computed with regression models for
y(k). The model for maximum price looks as follows:

exl(k)
gmax2(xl)=mﬁ

x;(k) = -1.267 +1.071- S1(k) — 0.384 - S2(k)
+0.142 - S3(k) + 0.206 - P(k) + 0.305 - R1(k)
—0.181- R2(k) - 0.269 - R3(k) +1.075 - y(k)

where y(k) is regression model output that accepts

the value of “1” when the price is growing, and “0”
when the price is decreasing. Using the threshold va-
lue of 0.46 we got the first type error 28 %, and the
second type error of about 36 %. The relative num-
ber of correctly forecasted direction of price move-
ment was about 74.19 %. Using the classification tree
(CHAID) with the threshold value 0.25, we got the
first type error 28 %, and the second type error of
about 48 %. The relative number of correctly fore-
casted direction of price movement was about 69.48 %.

To forecast minimum price the following model

was constructed:
o2k
Emin2 (xz):ma

x,(k) = =0.124 + 0.364 - S1(k) — 0.642 - S2(k)
~0.55-853(k) - 0.549 - P(k)—0.282 - RI(k)
+0.599 - R2(k) — 0.451- R3(k) +2.974 - y(k).

Using the threshold value of 0.47 we got the
first type error 46 %, and the second type error of
about 17 %. The relative number of correctly forecas-

ted direction of price movement was about 74.77 %.
Using the classification tree (CHAID) with the thres-

hold value 0.47, we got the first type error 50 %, and
the second type error of about 13 %. The relative num-
ber of correctly forecasted direction of price move-
ment was about 74.68 %. The results of maximum and
minimum price direction forecasting are given in Tab-
les 1 and 2 respectively.

Table 1. Results of forecasting maximum price direction

Relative number

Model type of correctly forecasted

directions
Regression model
with indicators 68.95 %
Logistic regression

i

with indicators 69.76 %
Classification tree
with indicators 68.95 %
Logistic regression
with indicators + forecasts 74.19 %
via regression model
Classification tree
with indicators + forecasts 69.48 %

via regression model

Table 2. Results of forecasting maximum price direction

Relative number

Model type of correctly forecasted
directions

Regression model

ot . 73.7
with indicators 9%
Logistic regression

.. 66.13
with indicators %
Classification tree

e 64.66
with indicators %
Logistic regression
with indicators + forecasts 74.7 %
via regression model
Classification tree
with indicators + forecasts 74.6 %

via regression model

Thus, in both cases the best results were achie-
ved with the logistic regression model that uses fore-
casts computed by linear regression. The statistical
characteristics of forecasts quality used indicate high
quality of the forecasts and the possibility for their
practical applications in trading rules.
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Conclusions

The general methodology was proposed for de-
veloping automatized software system for mathema-
tical modeling and forecasting nonlinear nonstatio-
nary economic and financial processes using statisti-
cal data. The software system development is based
on the following system analysis principles: hierar-
chical system architecture, taking into consideration
possible probabilistic and statistical uncertainties, avai-
lability of model adaptation features, generating of
multiple decision alternatives (multiple models and
forecasts), and tracking of computational processes at
all the stages of data processing and model construct-
ing with appropriate sets of statistical quality criteria.
As instrumentation for fighting possible uncertain-
ties the following techniques were used: optimal Kal-
man filter, missing data imputation techniques, mul-
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METOONKA MOOENOBAHHA | MPOMHO3YBAHHA HECTALIOHAPHUX MPOLIECIB Y ®IHAHCAX

Mpobnemartuka. binblicTb Mogene diHaHCOBNX Ta EKOHOMIYHMX MPOLIECIB BUPI3HAIOTLCA 3HAYHOO 0BYMCIIIOBANBHOK CKITaAHICTIO,

a nobyaoBa NpOrHo3iB NPUAHATHOI SIKOCTI ANS LMX NPOLECIB HA NOTPIOHUIA YaCcoBUIA FOPU3OHT — BENUKOK TPYAOMICTKICTIO. TOMY po3pobka i
BMPOBagXeHHS ePEKTUBHUX IHCTPYMEHTIB NPOrHO3HOIO MOAEmNtoBaHHA (DiHAHCOBUX Ta EKOHOMIYHUX MPOLIECIB € OAHIEI0 3 aKTyanbHUX i
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NPaKTUYHO 3Ha4YMMUX 3agad. Y poboTi po3rnagaeTbCa NMMTaHHS MOAENOBAHHA Ta NPOrHO3yBaHHS HEMIHIMHUX HECTaLiOHapHNUX MpoLeciB
Yy MaKpOEeKOHOMILi Ta diHaHCax i3 BUKOPUCTaHHAM METOAMKM, B OCHOBY SIKOI MOKNafeHi MPUHLMNY CUCTEMHOrO aHaniay, Taki sk iepapXiyHe
MOZENOBaHHS, BpaxyBaHHS HEBM3HAYEHOCTEN, ONTUMI3aLisi XapakTepUCTUK 32 AONOMOIOK KOMMIEKCHUX KPUTEPIiB, @ TakoX CTPYKTYp-
HO-MapameTpuyHa aganTauis. 3acTocyBaHHs 3arMpONOHOBaHOI METOAUKN AA€ 3MOry MOKPaLLUTK SKICTb MPOrHO3yBaHHS 3@ PaxyHOK BU-
SIBMEHHs1 0cOBNMBOCTEN A0CNigXyBaHOro npoLuecy 1 aganTtauii Mogerni 4O HOBUX AaHUX TOLLO.

MeTa pocnigxeHHA. Po3po6neHHs MeToankn Ans NPOrHO3HOrO MOAENIOBAHHA HECTaLiOHapHWX MpoueciB y iHaHcax i Makpo-
E€KOHOMILlj i3 BUKOPUCTaHHSIM CTaTUCTUYHMX JaHWX Ta il peanisauis y BignoBigHIN KOMM'IOTEPHI CUCTEMI.

MeToauka peani3auii. MeTognka 6a3yeTbCcsi Ha TeXHONOrisSX NnonepeaHLoi 06pPOBKN CTaTUCTUMHUX AaHUX, CNPAMOBAHMX Ha YyCy-
HEHHS MOXIMBMX HEBU3HAYEHOCTEW, 3aCTOCYBaHHI KOpensauiiHOro aHanidy Ans OuiHIoBaHHSA CTPYKTYpW Mogeni Ta BUOopi MmeTtoais oui-
HIOBaHHSA nNapameTpiB Mofernen, 064YMCNEeHHi OLHOK MPOrHO3iB i reHepyBaHHI anbTepHaTMBHUX pilleHb. Lle fae moxnuBicTe 06’€eKTUBHO
OLiHIOBaTW pe3ynbTaTi, OAepXaHi Ha KOXHOMY eTani po3B’si3Ky 3adadi MOAemntoBaHHA HeMiHIMHNX HecTauioHapHUX NpoLeciB Y Makpo-
E€KOHOMiLi Ta cpiHaHCcax. Y OOCHiMKEHHI NPOMOHYETLCS OpUriHanbHa MeToaMKa BU3HAYEHHSI CTPYKTYpU MoAeni 3 noganbLumm il BNpoBaKeH-
HSIM B iHpOpMaLiHy cucTemy NiATPUMKA NPUAHATTS PilleHb.

Pe3ynbTatn gocnigxeHHs. [Ina BuGpaHux ciHaHCOBKX i MakpoekoHOMIYHUX mpoueciB 6yno nobygoBaHo BiAMOBIAHI Moaeni.
Bucoka skicTb KiHLEeBOro pesynbTaTy aHanidy 4aHuX i TpOorHo3yBaHHS AOCATHyTa 3aBAsiKv peanisauii OuiHIOBaHHS ogepXXaHuX pesynbTa-
TiB i3 BUKOPUCTAHHAM CTATUCTUYHMX KPUTEPIIB SKOCTi Ha KOXXHOMY eTani 06pobku AaHnx, nobyaoBy MoAernen i MPOrHO3yBaHHs, a TakoxX
3aBAAKM MOXIMBOCTI aganTauii mogenen 4o HOBUX AaHUX Yepes3 NOBTOPHWUI aHani3 CTaTUCTUYHUX XapakTepUCTUK AOCNIAKYBaHUX Npo-
LLeCiB i 3aCTOCyBaHHSA KOMOIHOBaHWNX KpUTEPIiiB agekBaTHOCTI MoAenen Ta SKOCTi OLiHOK NPOrHO3iB i 3py4HOMY MPEACTaBMNEHHIO MPOMIXK-
HWX Ta KIHUEBWX pe3ynbTaTiB.

BucHoBku. 3anponoHoBaHa MeToAuKa BUKOPUCTaHa A5 NPOrHO3HOTO MOAESOBaHHSA OKPEMUX MAKPOEKOHOMIYHMX Ta dhiHaHCo-
BMX npouecis YkpaiHu. OTpumaHi pesynbtaTty cBig4aTb Npo Te, WO il MOXHa YCMilHO BUKOPWUCTOBYBATU ANl PO3B’A3aHHS NPaKTUYHMX
3aday nobyaoBu MoAernen i NPOrHO3iB HENiHIMHNX HecTauioHapHUX MPOLIECiB B YMOBaxX HEBM3HAYEHOCTEN Pi3HMX TuniB, AKi 3a3Buyan
[0BOAMTLCA PO3rNSAaTH Mig Yac MOAeNoBaHHA Ta MPOrHO3yBaHHS, BUKOPUCTOBYIOUM CTATUCTUYHI AaHi.

Knio4yoBi cnoBa: HeniHiiHWI HecTauioOHapHUI NPOoLEC; HEBM3HAYEHOCTi; MaTeMaTU4yHe MOZENOBAHHS; NMPOrHO3yBaHHS; Makpo-
EKOHOMIYHI Ta (piHaHCOBI NpoLECH.

M.N. bugtok, C. Osepmaliep, T.W. MNpocaHkuHa-XKapoea, A.H. TepeHTbeB

METOONKA MOOENNPOBAHNA N NMPOrHO3MPOBAHUA HECTALIMOHAPHbBIX MPOLIECCOB B ®MHAHCAX

Mpo6nematuka. bonblwas yactb Mogenen (PUHAHCOBBLIX M IKOHOMMYECKUX MPOLIECCOB OTNMYAETCA 3HAYMTENbHOW BbIYUCIW-
TENbHOW CMOXHOCTBIO, @ MOCTPOEHME MPOrHO30B NPUEMIIEMOrO KayecTBa Ha HEOOXOAUMBIVE BPDEMEHHOW FOPU3OHT — 3HAYUTENBHOW TPY-
poeMkocTbio. Moatomy paspaboTtka n BHegpeHne adheKTUBHbBIX MHCTPYMEHTOB NPOrHO3HOTO MOAENMPOBaHUS (OMHAHCOBBLIX U AKOHO-
MWYECKUX MPOLIECCOB SIBMSIOTCS OAHON U3 aKTyarbHbIX U NPaKTUYeCKn 3HauYuMbIX 3agad. B paboTte paccmaTtpuBaloTcst BONpochkl Moae-
NMPOBaHMA U NPOrHO3NPOBAHUS HENMHENHBIX HECTALMOHAPHBIX NMPOLIECCOB B MAakpPOIKOHOMUKE M (DMHAHCaxX C MUCMONb30BaHWEM METO-
VKW, B OCHOBY KOTOPOW NOMOXEHbI MPUHLMMbBI CUCTEMHOIO aHanuaa, Takue Kak nepapxmyeckoe MoaenMpoBaHve, y4eT BIMSHUSA Heon-
pefeneHHoCTeN, ONTUMU3ALNS XapaKTepPUCTUK MOAENEN C MOMOLLbIO KOMMIEKCHbBIX KPUTEPUEB, a Takke CTPYKTYpHO-NapaMmeTpuyeckas
apantauus. lMprMeHeHVe NpeanoXeHHOW METOAMKM MO3BONUT YNyYLWWUTb KA4eCTBO NPOrHO3MPOBAHUS 3a CYET MUCCnefoBaHus ocobeH-
HOCTeW aHanuanpyemoro npolecca v agantauuy Mmogenen K HoBbIM AaHHbIM U T.N.

Llenb nccnepoBaHus. Pa3paboTka MeTOAMKM NPOrHO3HOrO MOAENMPOBaHWS HeCTaUMOHapHbIX NPOLECCOB B (hMHaHCax U Makpo-
3KOHOMVKE C MCMONMb30BaHNEM CTaTUCTUYECKUX AAHHbIX, @ TakKe ee peannsaums B COOTBETCTBYHIOLLEN KOMMbIOTEPHOW CUCTEME.

MeToamka peanusauumu. MeToanka OCHOBLIBAETCS Ha TEXHOMOrMsX npeaBapuTenbHON 06paboTkM CTaTUCTUYECKUX AaHHbIX,
npeaHa3HavyeHHbIX ANs YCTpaHeHWsi BO3MOXHbIX HEOMNpeAeneHHOCTeN, NPUMEHEHUN KOPPEnsLMOHHOIO aHanvaa Ans OueHWBaHUst
CTPYKTYpbl MOAENU 1 BbiIbopa METOAOB OLEHNBAHWNS ee MapameTpoB, BbIYMCIEHUN OLIEHOK NPOrHO30B U reHEPUPOBaHUN anbTepHaTyB-
HbIX peLleHunit. STo No3sonseT 06bEKTUBHO OLEHNBaTL pe3yrnbTaThl, MOMyYEHHbIE Ha KaXAOM 3Tane pelleHns 3aaadv MOAEennpoBaHust
HenVHelHbIX HecTauMoHapHbIX NMPOLECCOB B MaKpO3KoHOMYMKe U dunHaHcax. B paboTe npeanaraeTtcsi opuriHanbHasi MeToamka onpe-
AerneHnst CTPYKTYpbl MOAENN U BHEAPEHNE ee B MH(POPMAaLIMOHHYIO CUCTEMY NMOAAEPXKKN MPUHATUS PELLEHNIA.

Pe3ynbTatbl nccnepoBaHus. [Ans BoblOpaHHbIX (MHAHCOBBLIX U MaKpOIKOHOMMYECKMX NPOLLECCOB Obinu NMOCTPOEHbI COOTBETCT-
BylOLLME MOAenu. Beicokoe kayecTBO KOHEYHOrO pe3ynbTaTa aHanvaa AaHHbIX U NPOrHO3MpPOBaHNUsA AOCTUTHYTO Bnarogaps peanusauum
OLEHNBAHNSA MOMYyYEHHbIX PE3yNbTaToOB C MCMOMNb30BaHWEM CTAaTUCTUHECKUX KPUTEPUEB KavyecTBa Ha KaXaom atane o6paboTku AaHHbIX,
NoCTPOEHNs Mofenew 1 NPOrHO3MpPoBaHus, a Takke bnarogapsi BO3MOXHOCTV agantaumy mogenen K HoBbIM AaHHbIM Yepesa NMOBTOPHbIN
aHanu3 cTaTUCTUYECKUX XapaKTepUCTUK UccredyemblX NMPOLEeCcCOB U NMPUMEHEHNEe KOMOVHMPOBAHHbBIX KPUTEPUEB afekBaTHOCTWM Moae-
nen n KayecTBa OLEHOK MPOrHO30B 1 yA0OHOMY NpeACcTaBeHNI0 MPOMEXYTOYHbBIX Y KOHEYHbIX pe3ynbTaToB.

BbiBoabl. MNpeanoxeHHas MeToAuka UCMoNb3oBaHa Ans NPOrHO3HOrO MOAENMPOBAHUSI HEKOTOPbIX MaKPO3KOHOMUYECKUX U du-
HaHCOBbIX MpoLeccoB YkpauHbl. [onyyeHHble pe3dynbTaTbl CBUAETENLCTBYIOT O TOM, YTO €8 MOXHO YCMELIHO UCNOofb30BaTh AN peLle-
HVSA MPaKTUYeCcKVX 3aaad MOCTPOEHVS MoAeNen 1 NPOrHO30B HENMMHENHBIX HECTaLMOHapHbIX NPOLIECCOB B YCMOBUAX HEONpPeAeneHHoCTen
pas3HbIX TUMOB, KOTOPbIE, KaK NPaBUo, NPUXOANTCA paccMaTpuBaTb BO BPeMs MOAENMPOBAHWS U MPOrHO3UPOBAHWSI HA OCHOBE CTaTUCTU-
YeCKUX AaHHbIX.

KntoyeBble cnoBa: HenVHENHbIN HeCTaLMOHAPHBIA NPOLECC; HEONPeAENeHHOCTH; MaTeMaTUyeckoe MOAENMPOBaHNe; NPOrHo-
31pPOBaH1e; MaKpO3KOHOMUYECHE 1 (DMHAHCOBbLIE MPOLIECCHI.
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