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FLEXIBLE SOLUTION OF A 2-LAYER PERCEPTRON OPTIMIZATION
BY ITS SIZE AND TRAINING SET SMOOTH DISTORTION RATIO
FOR CLASSIFYING SIMPLE-STRUCTURED OBJECTS

Background. Two-layer perceptrons are preferred to complex neural network classifiers when objects to be classified
have a simple structure. However, even images consisting of a few geometrically primitive elements on a monotonous
background are classified poorly with two-layer perceptron if they are badly distorted (shifted, skewed, and scaled).
Performance of two-layer perceptron can be bettered much with modifying its training. This is done by deliberately
importing distortions like shifting, skewness, and scaling into a training set, but only controlling volumes of the distor-
tions with a special ratio. Besides, the performance is improved with optimally sizing the hidden layer.

Objective. The goal is to optimize the two-layer perceptron by its size and the ratio for classifying simple-structured
objects.

Methods. The objects are monochrome images of enlarged English alphabet capital letters (the EEACL26 dataset) of
a medium size 60-by-80. EEACL26 is an infinite artificial dataset, so mathematical models of distorted images are
given. Then two-layer perceptrons having various sizes and training set smooth distortion ratios are trained and tested.
The performance is evaluated via ultimate-distortion classification error percentage.

Results. Based on statistical evaluations of classification error percentage at ultimate distortions, it is revealed that,
while the best ratio should be between 0.01 and 0.02, and an optimal number of neurons in the hidden layer should
be between 361 and 390. Sizes closer to 375 are counted as statistically more reliable, whereas the ratios are selected uni-
formly. Such solution is flexible allowing not only further-training with changing the hidden layer size and ratio, but
also a smart initial training for the first passes. Nevertheless, even after the first 100 passes, the two-layer perceptron fur-
ther-trained for extra 1190 passes by 10 times increasing distortion smoothness performs at 8.91 % of errors at ulti-
mate distortions, which is about 45 % better than a previously known result. At the expected practicable distortions, which
are far less, the error rate is 0.8 % that is quite tolerable. But here the main benefit of the optimized two-layer percep-
tron is its fast operation speed, rather than accuracy.

Conclusions. The obtained flexible solution fits other datasets similar to EEACL26. Number of classes can vary between
20 and 30, and number of features can vary between a few hundred and a few thousand. The stated example of achiev-
ing high-performance classification with two-layer perceptrons is a part of the common technique of statistical opti-
mization relating to neural network classifiers. For a more sophisticated dataset of objects, this technique is built and
executed in a similar way.

Keywords: classification; shifted-skewed-scaled objects; 2-layer perceptron size; 2-layer perceptron configuration; training
set; MATLAB training function; 2-layer perceptron performance.

Introduction where the object has L, features in its d-th dimen-
sion, L, e N Vd =1,N [2,3]. For N e {1, 2, 3} the

.. . . difference can be seen, whereas for N > 3 the diffe-
tioning in real-time currents, work on objects of a .. . . .

finite sct of C e N\I! cl hich differ sienifi. SN 1S visualized only in the object plane or spa-
tnite set o € N\{l} classes, which differ signifi- ce-solid projections [4, 5]. And when one watches

cantly from the pattern objects (POs) [1]. Such dif- the difference, there may be seen how one PO is
ference between an N-dimensional tracked object  shifted in relation to its center (towards each of its
and N-dimensional PO by N € N is stated in distin- dimensions), skewed (rotated at a plane or space-so-
lid angle), and scaled. These three most observable
key properties have been cited in consecution of cat-
ching their view with the human eye [1, 2, 4, 6, 7].

N Also there occur more complicated properties of the
< =>< L, object, being compared to a pattern one [1, 5, 7].

del For instance, it can have a changed number of its

Computer vision controllers and monitors, func-

ctions in their features, presented as N-dimensional
real-valued matrices (RVMs) of a format

* . . .
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dimensions or features [1, 3, 8]. But this rare com-
plication will not be devoted attention to.

Problem statement

For cases of simple-structured objects on a mo-
notonous background (this is about images), it is use-
ful to mathematically consider an object at the clas-
sifier’s input as a distorted pattern object (DPO), and
so there is no difference anymore, but a shifted-ske-
wed-scaled (SSS or S3) object [1, 2]. Classification
of S3 objects is hard because of either slow classifiers
based on hierarchical multilayered neural networks
(neocognitrons [3, 4], cresceptrons [5, 6], convolute-
onal neural networks [7, 8]) or poor-performing clas-
sifiers based on perceptrons [2, 9, 10]. However, the
poor performance of perceptrons over S3 objects is
explained just with fails in training them, whereas a
hierarchical multilayered neural network is a prog-
ram structure of a great difficulty and huge memory
consumption that makes impossible to accelerate its
action. Henceforward, there is a belief and goal to
make training a perceptron on S3 objects effective,
so it could classify S3 objects with its proper promp-
titude.

Training set for 2-layer perceptron to classify
S3 objects

Theoretically, 2-layer perceptron (2LP) is a uni-
versal approximator that fits almost everything if it
was identified correctly [2, 10, 11]. 2LP initializa-
tion is

R(F, H, C; furtes foLtF) (D)

N

by F = H L, and a 2LP hidden layer size H in neu-
d=1

rons with a hidden layer transfer function fy;rp and

an output layer transfer function fo;tp. 2LP (1) is

a raw mapping, having
F-H+H+H - C+C=H - (F+C+1)+C (2)

non-adjusted weight and bias values. They are adjus-
ted during the three-staged training process, when
2LP (1) input is fed with training sets [9]. On the first
stage, 2LP is trained on C pattern F-featured objects,
presented in the form of N-dimensional RVMs
{B, = [b}”]zzp}f:1 with a subscript J. On the second

stage, 2LP input is fed with the training set
{B)ii, (A} (3)

of ReN replicas B =[b,,. ]y, and P e N portions
of F xC matrices {f&(p)}l}:=1 of P-C DPOs, where

c-th column of matrix B corresponds to the c-th
class PO, whose matrix B, has been reshaped into

F x 1 matrix-column, and c¢-th column of matrix
A(p) corresponds to the c-th class DPO. Set (3) is
passed through 2LP for Q € N times. On the third

stage, 2LP is re-trained on the single replica B.
Clearly, the key stage is the second stage. In a case
of S3 objects, this stage might be close to effective-
ness if roughly C < 10 and F < 10, else training on (3)
mostly does not converge [1, 12, 13]. But it was
shown in articles [2, 9] for C = 26 and F = 4800
that the problem of swiftly classifying S3 objects
could be solved with 2LP, trained with a modified
training set

{BYX 1, (A(p)Y2.1} by A(p)=A(p)+Mp)-N
N o )
at k(p):%-p for p=1, P

instead of (3), where A(p) is a standard deviation (SD)

by 4800x26 matrix N of values of normal variate
with zero expectation and unit variance (NVZEUYV).
POs were modeled with 26 monochrome 60x80 ima-
ges (M6080Is) {B, =[5 lsoxs0}2; of enlarged Eng-
lish alphabet capital letters (EEACLs) [2, 7, 9, 10],
and, instead of training on S3 M6080Is, there was
training on S3 M6080Is with normally distributed
pixel distortion (S3 M6080I-NDPD). Also 2LP (1)

(4800, 300, 26; &, &) )

with a logarithmic sigmoid transfer function (LSTF)
“logsig” & was attached to integers R=2 and P= 8§
for the training set in (4), fed the input of 2LP (5)
for O = 220 times, and maximal SDs n,, = 0.2,
Pmax = 0.2, Bmax = 1, defining ultimate intensity of
scaling, skewing and shifting, respectively [9]. Altho-
ugh maximal SD %, = A(8) = 0.08 for addition in (4)
was assigned scientifically, integer H = 300 was pre-
set for 2LP (5) empirically. Notwithstanding the gro-
undless A(8) along with 2LP size H, it performed at
the ultimate-distortion classification error percent-
age (CEP) 12.92 % (after the best 2LP had been fur-
ther-trained, setting 10 times greater P), that is pret-
ty fine for S3 object classifier (under the expected
practicable distortions, which are less, the corres-
ponding CEP was 1.64 %, so only one object of 64
ones was misclassified). Nevertheless, CEP for 2LP
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classifier over S3 objects as S3 M6080Is might be
decreased more if to optimize 2LP in its size H and
M(8) simultaneously.

For building a swift classifier of S3 M6080Is on
the base of 2LP by optimizing the 2LP size H and
value A(8), there are six items to be completed:

1. To configure 2LP for training on S3
M6080I-NDPD.

2. To state mathematical models of S3 M6080Is
and S3 M6080I-NDPD.

3. To test the trained 2LP for evaluating its per-
formance as a function of SD A(8) and 2LP size H.

4. To optimize those two factors for identify-
ing 2LP.

5. To train further the identified 2LP until its
performance becomes unimprovable (the perform-
ance should be higher than performance of 2LP with
CEP 12.92 % in article [9]).

6. To circumscribe bounds of S3 objects, which
can be classified with the identified optimally-sized
2LP (for optimality in its size and SD for pixel dis-
tortion).

All computational processes are coming to be
run within MATLAB environment [2, 9, 10], because
of MATLAB possesses any needful means to build and
simulate 2LP, regulating its parameters, properties
or attributes far beyond operatively than being coded
and run in C++ or C#. Also MATLAB since R2012a
supports powerful enhancements for parallel and clus-
ter computations, which shall be used for training
and multi-batch testings to make multiple 2LP per-
formance evaluations.

2LP configuration for training on S3 M6080I-
NDPD

Before training on S3 M6080I-NDPD, 2LP
R(4800, H, 26, &, &) (6)

is initialized with MATLAB function “feedforwardnet”
from Neural Network Toolbox [9]. Any other initia-
lization function (of any other appropriate environ-
ment) can be surely used as well. 2LP (6) size H for
S3 4800-featured objects with C = 26 must be of or-
der of hundreds or higher. From previous experience,
H < {[100; 460] " N}. 2LP (6) is adapted with weight

and bias learning rules by Neural Network Toolbox
adapt function “adaptwb”. It is going to be trained
with MATLAB backpropagation training function “tra-
ingda”, which will update 4827 - H + 26. weight and
bias values (2) of 2LP (6) according to gradient de-
scent with the adaptive learning rate [2, 14, 15]. Use-
fulness of 2LP (6) during training will be measured

with its performance function “mse” according to the
sum of squared errors. Finally, having preset the
minimum performance gradient to 107, let the num-
ber of epochs be 15,000 in order to prevent long-
dragging convergence and to shorten duration for
each of Q passes.

Models
NDPD

of S3 M6080Is and S3 M6080I-

Let the process of forming S3 M6080Is be di-
vided into three phases. These phases come in their
succession of completing the previous phase with the
next one: scaling, skewing, shifting. This is actually
reverse to consecution of catching S3 objects’ view
with the human eye.

During the first phase B, is scaled with the sca-

ling map o into the c-th class EEACL as V' x M mat-
rix Z.(p) by SD n(p) and the scale coefficient

s((p)), where

3 _ — Nmax .
[Be, <(PI=Ze(p) (p) =25,

sn(p) =n(p)i(p)+1 at p=1, P

with the value &(p) of NVZEUYV =(p), which is reraf-
fled until ¢(n(p)) > 0. In MATLAB the map o in (7) is
supported with MATLAB function “imresize” [2, 9, 16].
M6080I B, is enlarged by ¢(n(p)) times through (7) if

c(m(p)) > 1, and B, is reduced by times

1
s((p))
through (7) if ¢(n(p)) < 1, and B, remains itself if
s(n(p)) = 1.

During the second phase Z.(p) is skewed at an
angle p(p) in degrees by SD u(p) to V' x M matrix
T.(p), where

T.(p) = 1=l - Z.(p), p(p)], w(p) = M”’T“ D,

180 — ®
p(p) = T'u(p)e(p) at p=1, P

with the value 6(p) of NVZEUV ©(p). The map =
in (8), supported with MATLAB function “imrotate”,
skews the input negative 1-Z_.(p) in counterclock-

wise direction if p(p) > 0, and for p(p) < 0 it is turned
clockwise, while for p(p) = 0 the matrix Z.(p) re-
mains itself. Before shifting in the third phase, T, (p)
is re-formatted back into 60 x 80 matrix R.(p), still
representing the c-th class EEACL. If ¢c(n(p)) > 1
then lines with indices I and columns with indices
Jin T, (p) are discarded, where
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I={1, N,},{61+N,,V}},
J={, Ny}, 81+ Ny, M}},

Ny = Q(%)—SO +(%~sign|\uylj

)

N, = Q(%]-m{w.ggmw |j

o2

and Q(o) is a function, returning the integer part of
the number a, calculated by values {y, y,,} of two
independent NVZEUVs. These NVZEUVs are raffled
every time, when the function Q(a) is applied. If
c(m)) < 1 then T.(p) is padded from left for N
columns of ones and from right for Ny, columns
of ones, and it is padded from top for N, lines of

ones and from bottom for Ny, lines of ones for
contouring the skewed-scaled image T.(p) with the

background white color [2, 9, 16], where

80-M 1+ sign .
NwQ[ j+[ g“’M~s1gn|wM|j

2 2
. M M
2 _ ol
x&gn[z (2)}’
Nright :80_M_Nleft’

N, :Q(6O—Vj+( 1 +sign v,
i 2 2

)

Nbottom = 60_V—Ntop'

-sign |WV|)

The c-th class representative R.(p) is shifted
in two subphases [9, 17]. By SD

p(p) = Lo for p-TP ©)
it is shifted for X[B(p)] pixels horizontally and for
YIB(p)] pixels vertically, where

X[B(P)]=oBB(p)-v,(p))

. 1 —sign(oBp(p) - v,(p))| -80)
2

50, L Eno6HP) 1) =80)

Y[B(p)] = o(6B(p) - v2(p))

. L —sign((6B(p) - v, (p))| - 60)
2

0. Lo iEnolB0) 12 (p)I -60)

and function ¢(o) rounds o to the nearest integer less
than or equal to o with values {y,(p), v,(p)} of

two independent NVZEUVs. During the first shift
subphase, after horizontal shift and before vertical

one, the matrix R.(p) = [\ (p)]goxso i changed into

matrix S.(p) = [s%9(p)]o.g0» Where

sw(p)=1 for v =1, X[B(p)]
and s\ (p) =r(p) at 1=v-X[B(p)]
for v= m
Yu=1,60 by X[B(p)|>0,
s(p) =1 (p) at 1 =v—X[B(p)]
for v= 1,80+—X[[3(p)]
and s9(p)=1 for v =81+ X[B(p)],80
Yu=1,60 by X[B(p)]<0,
s (p) =1 (p) Vu=1,60
and Vv =1,80 by X[B(p)]=0.

The second subphase in shifting the plane M6080I
is the vertical shifting, where matrix S.(p) is chan-

ged into matrix A_(p) = [a' (P)]soxso :

al)(p) =55 (p) at r=u+Y[P(p)]
for u= 1,60——Y[B(p)]
and a¥(p)=1 for u=61-Y[B(p)],60
vv =180 by Y[B(p)]>0,
al)(p)=1 for u=1,-Y[B(p)]
and a9 (p) =s(p) at r=u+Y[p(p)]
for u=-Y[B(p)]+1,60 Vv =180
by Y[B(p)] <0
al$)(p) = s/ (p) Vu=1,60
and vV v=1,80 by Y[p(p)]=0.
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Hereon the third phase of forming S3 M60801
A(p) is complete for p = 1,P.

Subsequently the p-th full portion of 60x80
matrices {A_( p)}ﬁil is reshaped into 4800x26 matrix
A(p) for p=1,P. Then p-th portion of the full

batch of S3 M6080I-NDPD for the modified train-
ing set is formed due to (4). Now 2LP (6) by fixing
its size H < {[100; 460] NN} is ready for training un-

der parameters

Nmax = 0.2, Hmax = 0.2, Bmax = I, R=2,

(10)
P =8, 0=100

and some SD A(8). Once the best 2LP under para-

meters (10) is obtained, it will be further-trained un-
til its performance becomes unimprovable [9].

Evaluating the performance of the trained 2LP

For presetting some SD A(8) it is useful to de-
note the pixel-to-shift-skew-scale standard devia-
tions ratio (PS3SDR) rpg35pr, that shall define how
much of pixel distortion should be imported into
matrices {A( p)}f::l. PS3SDR can be assigned as one

of the statements:

A A A

max max max

b
T] max M max Bmax

And for definiteness, let PS3SDR be assigned via
SD of the hardest by its influence distortion, espe-
cially since B, =1:

7\'max — 7\1

Bmax

’pS3SDR = max - (1T)

From previous experience, A, €[0.01;0.1] and
SO Fpg3spr € [0.01;0.1]. However, value rpg3spr =0

will be tested for comparisons.
Mainly the performance of the trained 2LP (6),
whose post-training configuration is denoted by

P4800, H, 26; &, &; Nyaxs
Hmax> Bmax> "ps3sprs R P, Q)
=9(4800, H, 26; &, &; 0.2,

0.2, 1, mps3spr» 2, 8, 100) (12)
is CEP

Imax (1, ps3sDR) 100
b-C

(13)

Prmax (H , T'ps3spR) =

with a classification errors number (CEN)
Gmax (H , 1ps3spr) by b full batches of C S3 objects,
feeding the input of 2LP (12). Therefore, for opti-
mization of 2LP classifier of S3 M6080Is, there is
an optimization problem

[H" rpsssprl

ca P (H, rpsssDR»] (14)

rg( min
[H rogsspr €{[100; 4601 N}<[0; 0.1]

on a line rectangle
{[100;460] NN} x[0;0.1] (15)

of 2LP (12) sizes and PS3SDR (11) values. While
2LP (12) is tested, its input is fed with b = 400 full
batches of S3 M6080Is, formed by maximal SDs

N=Nmax =02, p=ppy =02, B=Bp, =1. (16)
We do not use SDs in their ranges like
N € [03Mmax] =1050.2], p e [0; 10,1 =1050.2],
B €10;Bmax] =10:1],

because, using the previous experience, there no spe-
cial SDs that could induce discontinuities of CEP
plotted against H and rpg3spR-

It is clear that the segment of PS3SDR (11)
[0; 0.1] must be sampled. A successive sweep of
2LP (12) on the segment of PS3SDR [0; 0.1] may

be fulfilled on the pointed line rectangle (15)
{100 + 20k}18 ) x {0.01}'2,
< {[100;460] N N} x [0;0.1].

The purpose of sweeping 2LP (12) through 209
points on the point rectangle (17) is to narrow do-
main (15), where the problem (14) solution would
be enclosed. So, after the first approximation, an
evaluation of surface (13) on (17) is in Fig. 1 (the
CEP-against- H view is intentionally overshadowed).

The evaluation of surface (13) in Fig. 1 is a mean
of 10 2LPs in each of those 209 points. It is obvious
that Fig. 1 (namely, the CEP-against-H view) allows
to narrow problem (14) to a problem

(17)

[H" Fossspr]

< min H, 1 . (18
arg([H "PsstR]E{[360;460]ﬂN}><[0;0.]]{pmax( PS3SDR)}) (18)

Second approximation shall either show the
minimum point of surface (13) or narrow the prob-
lem (18) towards it.
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H

Fig. 1. An evaluation of surface (13) for 2LP (12) on the point rectangle (17) with the CEP-against-H view beneath the surface

Solution of problem (14)

A re-evaluation of surface (13) on a pointed
domain
{360 + 20k}, _y x {0.01:}'2,
< {[360;460] N N} x[0;0.1] (19)
under minimum in (18) is shown in Fig. 2 (the CEP-

against- H view and the CEP-against-PS3SDR view
are intentionally overshadowed). The CEP-against- H

view allows to conclude that H~ e {[361;390] N N}.

The CEP-against-PS3SDR view addresses the
PS3SDR value 0.02 to us, whereas the PS3SDR va-
lue 0.08 might have been ignored because a seeming
minimum at H = 440 and rpg35pr = 0.08 is uncon-
vincing (see Fig. 3). Remember that rpg35pgr = 0.08
was a solution of the similar problem in [9], where
2LP had been optimized by only PS3SDR. Here,
nonetheless, 7pg35pr = 0.08 is off because a mean of
CEPs over a sub-domain

{360,380, 400} x {0.017}!°, (20)
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Prmax(H, Fpsaspr)

H, rpsispr)

Prmax (

Pmax (Ha rPSSSDR)

0.04 0.06 0.08 0.1

0.02

380 400 420 440

360

IPS3SDR

Fig. 2. A re-evaluation of surface (13) for 2LP (12) on the point rectangle (19) with the CEP-against- H and CEP-against-PS3SDR

views beneath the surface, where the re-evaluation is a mean of 20 2LPs in each of those 66 points (10 2LPs relating to
every point in Fig. 1 are used as well)
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360
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Fig. 3. Vicinity of the point [H rps3spr] = [440 0.08] encloses only points, at which CEP is too high, so the small CEP at H = 440

and rpg35pr = 0.08 is pure randomness

42.6
424
42.2
42.0
41.8
41.6
41.4
41.2
41.0
40.8

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
TPs3SDR
Fig. 4. A mean of 60 CEPs (from 20 2LPs times 3 sizes of 2LP)

over sub-domain (20), where minima at the PS3SDR va-
lues 0.01 and 0.02 are close

taken against PS3SDRs is worse for rpg35pr > 0.03

(see this in Fig. 4). Moreover, CEPs for rpg35pg > 0.03
become much unstable (see CEP variance of 60 2LPs
against PS3SDRs in Fig. 5).

A A
1 ]
0.55r . H T
o
0.50 Variances at |
PS3SDR values
0451 0.04 and 0.05 are 1
too high (greater
0401 than 16 and 31,
respectively)
0.35
0.20 1
0.25F
0.20
0.15

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Ips3SDR

Fig. 5. CEP variance of 60 2LPs (the PS3SDR values 0.04 and
0.05 drop out as they thrice produced CEPs greater than
96 %, i. e. three 2LPs failed)

Another reason to accept 7pg3spr = 0.02 is that
this is very stable PS3SDR, producing small CEPs
(Fig. 6). On the other hand, setting rpg35pr = 0.02
gives a lesser number of 2LPs with high CEPs (Fig. 7).
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Fig. 6. Number of 2LPs whose CEP is less than 40 %

As total number of 2LPs (for each point of PS3SDR)
is 120 here (only those six 2LP sizes from Fig. 2

are considered), then a score of rpg3spr = 0.02 in

Fig. 7 is about 16 % and 11 % better than scores of

VPS3SDR = 003 and rps3SDR = 0.05, I‘eSpeCthely
Apparently, no single point can be asserted as

a solution of problem (14). However, before train-
ing 2LP

(4800, H', 26; &, &; 0.2, 0.2, 1, Fpssspr» 2 8, 100)

further, a single 2LP size and the PS3SDR value
must be set. A too great size makes training longer.

Therefore, rpg3spr = 0.02 and H™ = 370.

Further-training

Firstly, a 2LP
27(4800, 370, 26, &, &, 0.2, 0.2, 1, 0.02, 2, 8, 100) (21)

is obtained. For training 2LP (21) further, let P be
increased to 80. Training will be stopped if perform-

ance improvement fails 50 times in succession. Per-
formance of 2LP (21) is p,,(370,0.02) ~ 39.46,

which is nearly the same as CEPs in Fig. 2 for H = 360
and H =380. Having further-trained 2LP (21) for
extra 1190 passes (denote this 2LP by 1190FT-2LP)
by increasing smoothness of distortions with P = 80
(see in article [18], how training is smoothed for
improving the 2LP performance), performance ex-
ceeds that 12.92 % at ultimate distortions (16): now
CEP is 8.91 %, which is about 45 % better. The
1190FT-2LP performs very well at lesser distortions.

44 1 1 L 1 L 1 L 1
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

I'Ps3SDR

Fig. 7. Number of 2LPs whose CEP is higher than 41 %

Its CEP across the increasing distortions tied to shif-
ting denoted by p (B; 370, 0.02) is seen in Fig. 8.
Being compared to analogous CEP in [9] denoted by
pS_OS(B), its gain is obvious. Distortions by SDs (16)

appear ultimate, so the expected practicable SDs are
less. They are about up to =0.7 by the correspon-

ding n = 0.14 and p = 0.14, where CEP is 0.8 % that

is quite tolerable.

Difference between successfully classified (the
left side images) and misclassified S3 M6080Is by
maximal SDs in (16) is shown in Fig. 9, where six
level of distortions (connected to the shifting SDs)
are shown. The misclassified images appear so much
distorted, that the classifier cannot properly “see”
them [9]. Seemingly, bad shifting appearing the most
intense distortion influences worst on the classifier.
Scaling influences much as well (but neither scal-
ing nor skewing causes so much misclassification as
shifting does). Even under twice lesser SDs, the mis-
classified EEACLs appear very much distorted (the
right side images).

Although the 1190FT-2LP could be further-trai-
ned more, with probably greater P, increment of P
has its limit, after which the performance is unim-
provable [9, 18]. Another possibility is slightly vary-
ing PS3SDR before every batch of extra passes is
done. Changing the 2LP size is possible as well:

1) when H is decreased, the respective indices
(which are randomly generated) in both layers and
in biases to the hidden layer are deleted;

2) when H is increased, a new indices are
randomly inserted into both layers and into biases
to the hidden layer (the previous indices are offset),
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Fig. 8. A disclosure of CEP across the increasing distortions tied to shifting

and values for their elements are randomly selected
from a normal distribution (the expectation and va-
riance should be close to those in the corresponding
layer).

Thus, the solution of problem (14) can be re-
represented wider as

[H" rpsaspr] € {361;390] NN} x[0.01;0.02]  (22)

by referring to Figs. 4 and 5 along with Figs. 6 and 7.
This is a rough decision, but a researcher can freely
change the hidden layer size from 361 to 390 neu-
rons by varying PS3SDR between 0.01 and 0.02, and
performances for 2LP (21) and further-trained 2LPs
are expected to be the best. Such a line rectangle
solution is more reliable and flexible than a solu-
tion with a single 2LP size and a single PS3SDR
value [19, 20].
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Fig. 9. EEACLs misclassified (the right side images) and classified successfully (the left side images) by 1190FT-2LP

Propagation of solution (22) changed to a similar one, however, solution (22) is
expected to keep its optimality for 2LPs (see it in

Solution (22) has been obtained for an infinite  Fig. 10, whereon statistically more reliable points are
dataset of EEACLs [7, 9, 10, 16]. If the dataset is lined out thicker; nonetheless, thickness along a ho-
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rizontal line remains the same because varying those
PS3SDRs influences less on CEP). The similarity
consists in the following items:

1. Number of classes is roughly between 20 and
30. A case with C = 26 is perfect.

2. Number of features is roughly between a few
hundred and a few thousand. A case with F = 4800
or about that is perfect.

3. POs and DPOs (S3 POs) have a monoto-
nous background, and their structure is of either a
few geometrically primitive elements (for images) or
a few common specificities (for objects having a one
dimension or four and more). Color images (of ob-
jects having three dimensions) should not have gra-
dient colors.

N9 — — — — =
9 —— — — — — -
I — — — -
390 — -
389 —— -
388 — -
387 —— -
386 —— -
385 —— -
384 — -
383 —— -
382 — -
381 —— -
380 —— -
379 —— -
378 —— -
377 —— -
376 —— -
375 —— -
374 —— -
373 — -
372 —— -
371 —— -
370 —— -
369 — -
368 — -
367 —— -
366 —— -
365 —— -
364 —— -
363 —— -
362 —— -
361 —— -
- — - —— —— — — — =
9 S - —— — — — -
38— — — — — —— —— —

0.008 0.01 0.012 0.014 0.016 0.018 0.02 0.022

I'PS3SDR

Fig. 10. Solution (22) with points lined out thicker as statistic-
cally more reliable

The stated example of achieving high-perfor-
mance classification of S3 POs with 2LPs is a part
of the common technique of statistical optimization
relating to neural network classifiers [21]. For a more
sophisticated dataset of objects, this technique is built
and executed in a similar way, but 2LPs would not
be effective there anymore, so more complicated neu-
ral networks are optimized on a lot of other parame-
ters (so-called hyperparameters). The main require-
ment for treating the solution (22) applicable is si-
milarity between a dataset to be classified and the
EEACL26 dataset. At that, a slight modification of the
training process at its second stage may be done.
Instead of linearly increasing SDs by (4), (7), (8),
and (9), they may be taken in an increasing order,
so that

Mp) <Mp+1), n(p) <n(p+1),
w(p) <w(p+1),
B(p) <P(p+1) Vp=LP-L

Moreover, it is not necessary to create sequences (23)
simultaneously. Such diversity shall help in preven-
ting overfitting.

(23)

Conclusions

Flexibility of solution (22) allows not only
further-training with changing the 2LP size and
PS3SDR, but also a smart initial training for the
first Q passes. An impact of such training is expec-
ted to be. This, however, is not going to expand ef-
ficient application of 2LPs — the efficiency exists just
for datasets of simple-structured objects (remember
those three items above).

Here, the main benefit of the optimized 2LP is
its fast operation speed, rather than accuracy. Com-
pared to slower classifiers built on more complicated
and accurate neural networks, 2LPs like (21) or that
1190FT-2LP can process a few times more objects
in a second, without losing much accuracy. So, opti-
mized 2LPs can be used in combination with com-
plex classifiers. Nevertheless, 2LPs (along with other
simple classifiers like learning vector quantization net-
works, support vector machines, radial basis networks,
probabilistic neural networks, generalized regression
neural networks) remain the best for classifying ob-
jects of single dimension (“column” data). But, what
is crucial, 2LPs having just two uncertain parameters
(its size by H and PS3SDR or similar training set
smooth distortion ratio) are optimized for a definite
classification problem in the easiest way.
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B.B. PomaHtok

THYUYKNY PO3B’A30K 3AOAUI OMTUMISALLT ABOLAPOBOIO NMEPCEMTPOHA 3A MOrO PO3MIPOM | CMIBBIAHOLLEH-
HAM FALKUX CIOTBOPEHBL Y HABYAJIBHIN MHOXWHI AN KIACU®IKALIT OB’EKTIB MPOCTOI CTPYKTYPU

MpobnemaTtuka. [1BoliapoBnM nepcenTpoHam HafaeTbCa nepesara Haf CKMagHUMUM HEMPOHHUMW Mepexamu, Konv 06’exTn ans
Knacudikauii MaTb NpocTy CTPyKTypy. OfHaK HaBiTb 306paXkeHHs), WO cKknagatoTbCs 3 OEKINbKOX reOMETPUYHO MPUMITUBHUX €neMeH-
TiB HA MOHOTOHHOMY (POHiI, KNnacngiKytoTbCS ABOLLIAPOBMM NEPCENTPOHOM MOraHo, SIKLLO BOHM CUIbHO CMIOTBOPEHI (3CYHYTi, MepeKoLeHi
Ta maclutabosaHi). NpoayKTUBHICTb ABOLLIAPOBOro NepcenTpoHa Moxe 6yTW 3Ha4YHO nokpalyeHa moaudikaulieto Moro HaByaHHs. Lie po-
BUTbCS HABMUCHUM BHECEHHSIM CMOTBOPEHb, NOAIGHUX 3CyBY, NEPEKOLLIEHOCTI Ta MacluTabyBaHHIO, Y HaBYarbHy MHOXMWHY, ane Tiflbku 3a
[0MOMOrol KOHTPOMo 06’eEMIB LiMX CNOTBOPEHb CreuianbHUM chiBBigHOLWEHHAM. Kpim Toro, MpoayKTUBHICTb NOKpaLlyeTbes nigbopom
ONTUMAarnbHOro PO3Mipy NPUXOBAHOIO Lapy.

MeTa pocnigxeHHsi. MeTotlo po6GoTy € onTUMi3aLlis ABOLAPOBOro NepcenTpoHa 3a Moro po3MipoM i 3ragaHoro criBBigHOLIEHHS!
ans knacuaikauii 06’ekTiB NPOCTOi CTPYKTYpU.

MeToauka peanisauii. O6’ekTamyn € MOHOXPOMHI 306paXKeHHs 36inbLUIEHNX BENWUKMUX NiTep aHrniincbkoro andasity (Habip AaHux
EEACL26) cepenHboro po3mipy 60x80. EEACL26 € HeCkiHYEHHUM LUTY4YHUM HabopOM AaHMX, TOMY AalTbCsa MaTtemMaTU4Hi Moaeni crno-
TBOPEeHWX 306paxeHb. [lani HaB4aloTbCS | TECTYIOTbCS ABOLLIAPOBI NepCenTPOHY, L0 MakTb Pi3Hi pO3Mipy Ta CniBBIAHOLWEHHS rMagKuMx
CMNOTBOPEHb Y HaBYarbHi MHOXWHI. [TpOAYKTMBHICTb OLHIOETHCA 3@ BiACOTKOM NMOMMIIOK KnacudikaLii Ha rpaHNYHMX COTBOPEHHSX.

Pe3ynbTaTu pocnigkeHHs. Buxogaum 3i CTaTUCTUYHMX OLLIHOK BiACOTKA MOMMIIOK Knacudikalii Ha rpaHUYHUX CMOTBOPEHHSX,
BUSIBINIEHO, LLO HaWKpalle CriBBigHOLIEHHS NoBMHHO 6yTn mixk 0,01 Ta 0,02, a onTMarnbHe YNCMO HEWPOHIB Y NPMXOBAHOMY Luapi Mae
6yTn mixx 361 Ta 390. Poamipu 6nvxye go 375 BBaxarTbCst CTaTUCTUYHO BinbLu HagiMHUMK, ToAi SIK CMiBBIAHOLLIEHHSI BUGMpatOTbCS piB-



IHOOPMALLINHI TEXHOIOT 1T, CACTEMHWUA AHATII3 TA KEPYBAHHS 73

HOMIPHO. Taknin po3B’A30K € rHY4YKMM, LO3BOJSAYM HE TiNbKy NoJanblue HaBYaHHS 3i 3MIHOK PO3Mipy MPUXOBAHOrO LLapy Ta ChiBBigHO-
LLEHHS, a 1 BATOHYEHE NepLIonoYaTkoBe HaBYaHHS Ha nepwmnx npoxoaax. Mpote HaBiThk nicna nepwux 100 npoxoais ABOLIAPOBUIA Nep-
CenTpoH, HaB4aHui Aani Ha 1190 ekctpanpoxogax 3i 36inbLueHoto B 10 pasiB rmagkicTio CNoTBOPeHb, Npautoe Ha piBHi 8,91 % nomunok Ha
rPaHNYHNX CNOTBOPEHHSIX, WO NpubnmaHo Ha 45 % Kpalle, HiX nonepeaHi Bidomui pedynbtaTt. Ha piBHI NpakTUYHO OYiKyBaHUX CMo-
TBOPEHb, SKi 3HA4YHO MeHLLi, piBeHb NoMuNok ctaHoBUTb 0,8 %, Lo uinkom npuinHATHO. OfHaK TyT rofIOBHOK BUTOAOK ONTUMI30BaHOMO
[OBOLLAPOBOro NepcenTpoHa € He TOYHICTb, a MOro LWBMAKOAIS.

BucHoBku. OTpuMaHuin rHy4YKUn po3B’si30K NigxoauTb iHWKMM Habopam gaHux, nogioHux EEACL26. Yucno knaciB moxe BapitoBa-
Tnes Mix 20 i 30, a YMcno o3HaK — MK Aekinbkoma COTHAMM i Aekinbkoma Tucsvamu. HasegeHun npuknag QOCArHEHHS] BUCOKOMPOAYKTMB-
HOI Knacudikauii 4BOLAPOBUMYK NMEPCENTPOHaMU € YaCTUHOI 3ararnibHOi METOAMKM CTAaTUCTUYHOI ONTUMI3aLii CTOCOBHO HENpPOMEPEXEBUX
KknacudikaTtopiB. [Ins GinbL cknagHux HabopiB AaHnx 06’ekTiB s MeToaMka OyayeTbCsl | BUKOHYETHCS Yy NOAIGHOMY CTUN.

KniouyoBi cnoBa: knacuaikauis; 3cyHyTi maclutaboBaHi CKOLLEHi 06’EKTW; pOo3Mip ABOLLAPOBOro NepcenTpoHa; KoHiIrypawis gBo-
LIApOBOro NepcenTpoHa; HaB4arnbHa MHOXMWHA; MATLAB-(PYHKLIA ANS HaBYaHHS; NPOAYKTUBHICTb ABOLLAPOBOro NepcenTpoHa.

B.B. PomaHiok

MBKOE PEWEHUE 3ALAYM ONTUMU3ALIMM ABYXCIIOMHOMO MEPCEMTPOHA MO EFO PASMEPY Y COOTHOLLEHWIO
rMAOKNX NCKAXEHUIN B OBYYAIOLLEM MHOXECTBE [J15 KNACCU®VKALIMY OB BEKTOB MPOCTOM CTPYKTYPhI

Mpo6nemaTtuka. [IByxcroliHble NepcenTpoHbl NPeanoYnMTaemMbl CrOXHbLIM HEMPOHHBIM CETSM, KOraa O6bekThl Ans Knaccudukaumum
MUMEIOT MPOCTYto CTPYKTYpy. OfHaKoO Aaxe U30BPaKeHUs!, COCTOSILLME U3 HECKOMbKUX FEOMETPUYECKU NMPUMUTUBHBIX 31IEMEHTOB Ha MO-
HOTOHHOM (POHE, KIaccuMUMPYIOTCA ABYXCMONHBIM NEPCENTPOHOM MIIOXO0, €CIU OHWM CUITbHO UCKaXeHb! (COBUHYTbI, MEPEKOLLEHbI U OT-
MacLTabupoBaHbl). [pon3BoaNTENBHOCTL ABYXCIOWHOIO NEPCenTPoHa MOXET ObiTb 3HAYUTENBHO ynyylleHa Moaudukaumen ero oby-
yeHusl. DTO AenaeTcsl NpegHamMepeHHbIM BHECEHMEM WCKaXEeHUIN, NogoOHbIX CABUIY, NepeKoLeHHOCTN 1 MacwTabupoBaHuto, B 06y-
yaroLee MHOXXECTBO, HO TOMbKO C MOMOLLbIO KOHTPOIS 06BbEMOB 3TUX UCKAXXEHUI CrieumarnbHbIM COOTHOLWEeHeM. Kpome Toro, npon3eo-
OWUTENbHOCTL yny4liaeTcst nogbopoM onTMManbHOro pa3Mepa CKpbITOro Crosi.

Llenb uccnepgoBaHus. Liensto paboThbl SBASETCH ONTUMU3aLUs ABYXCMOWHOrO NEPCenTpoHa Nno ero pasmepy 1 yrnoMsiHyToro co-
OTHOLLEHUsI ANs knaccudukaunm o6 beKToB NPOCTON CTPYKTYPbI.

MeToauka peanusaumm. O6bekTaMn SBMASOTCS MOHOXPOMHbIE M30OPaXKeHWs1 YBEMUYEHHbBIX 3arnaBHbIX GYKB aHrnuiickoro anda-
BuTa (Habop aaHHbIX EEACL26) cpenHero pasmepa 60x80. EEACL26 sBnsieTcs 6€CKOHEYHBIM NCKYCCTBEHHBIM HAB0OPOM AaHHbIX, N03-
TOMY [alTCs MaTteMaTUYecKMe MOAENM UCKaXKeHHbIX n3obpaxeHuin. 3atem obyyaloTcs U TeCTUPYIOTCS ABYXCIONHbIE NEPCENTPOHSI,
VMEIOLLME pa3nnyHble pasmepbl N COOTHOLLEHUS TMafKNX UCKaXEHU B oby4atoleM MHoxecTBe. [1pon3BoauTenbHOCTb OLIEHMBAETCS Ye-
pes3 NpoLeHT owmnbokK Knaccmukaummn Ha npedenbHbIX NCKaXEHUSIX.

Pe3ynbTathl uccnegoBaHus. Vicxoas U3 cTaTUCTUYECKMX OLEHOK NpOoLEHTa oWwnbok Knaccudukaumm Ha npeaernbHbIX UcKaxe-
HUSIX, OOHapPYXXEHO, YTO Haunyuyllee COOTHOLEHUe A0MKHO ObITb Mexay 0,01 1 0,02, a onTmarnbHoe YMCNo HEMPOHOB B CKPLITOM Crloe
[omkHo 6bITb Mexay 361 1 390. Paamepbl 6rnvxe k 375 cunTtaroTcst cTaTucTUYecky 6onee HageXHbIMU, Toraa Kak COOTHOLLIEHWS BblOuW-
patoTcsi paBHOMEpPHO. Takoe peLleHust ABNSieTCst MMOKUM, NO3BONSS He TONbKO AarbHelllee obyyeHne ¢ MU3MEHEHWEM pasmepa CKpbITOro
CINOSi U COOTHOLLIEHMS!, HO TaKkke U U3SILLHOe HavanbHoe obyyYeHue Ha nepBbixX Npoxodax. Tem He MeHee Aaxe nocne nepsbix 100 npo-
XO[0B [ABYXCIIOMHbI NepcenTpoH, 0byyeHHbI fanee Ha 1190 akcTpanpoxodax ¢ yBenunyeHHon B 10 pa3 rmagkocTbio UCKaxKeHWn, paboTa-
eT Ha ypoBHe 8,91 % owmnbok npy NpeenbHbIX UCKaXEHUsIX, YTO MPUMEPHO Ha 45 % nydlle, Yem npeabiayLuMin U3BECTHbIN pe3ynbTart.
Ha ypoBHe npakTu4eckn oXkmaaemblX UCKaXKEHWI, KOTOpble 3HAYUTENBHO MEHbLLE, YPOBEHb OlwmMbok coctasnseT 0,8 %, YTo BMOMHe CHOC-
Ho. OfHaKo 3aech rmaBHOWN BbIrOA0W ONTVMU3MPOBaHHOIO ABYXCMOWHOIO NepcenTpoHa sSiIBMSETCS He TOYHOCTb, a ero bbICTpoAencTBUE.

BbiBoabl. [MonyyeHHoe rubkoe pelleHve NOAXOAUT ApyrMM HabopaMm AaHHbIX, nogobHbiM EEACL26. Yucno knaccoB MOXeT Bapb-
mpoeaTtbest Mexay 20 n 30, a YMCNo NPU3HAKOB — MEXAY HECKONbKUMU COTHSIMU U HECKOSbKMMM Thicsyamu. MNprBeaeHHbIN npyuMep 4OCTU-
YKEHUS BbICOKOMPOWU3BOAUTENBHON Knaccudukaumm ABYXCIONHbIMY NEPCENTPOHaMM SIBNSIETCA YacTbio O6LLEN METOAMKN CTaTUCTUYECKOW
oNTUMU3ALMM B OTHOLLEHNW HEMPOCETEBbIX KnaccudmkaTopos. [Ins 6onee cnoxHbIX HAGOPOB AaHHbIX 06LEKTOB 3Ta MeToAMKa CTPOUTCS U
ncnonHsieTcs B nogobHom cTune.

KnroyeBble cnoBa: knaccudukauus; CABUHYTbie MaclLTabupoBaHHbIE CKOLLEHHbIE 06BEKTbI; pa3mep ABYXCIONHOMO NepcenTpoHa;
KOHbUrypaumsi BYXCMOVHOro nepcenTpoHa; obyyarollee MHOXeCTBO; MATLAB-pyHKUMSA Ans 0O6y4YeHusi; MPOM3BOAUTENBHOCTb ABYXCION-
HOro nepcenTpoHa.

PexomenmoBana Panoto Haniitnna no penaxiii
¢akyJIbTeTy NPUKJIIATHOI MaTEeMaTUKN 27 gyepBHs1 2017 poky
KIII im. Iropst CikopchKoro



