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Background. Simple mathematical models of contamination and SIR-model of spreading an infection were used to 
simulate the time dynamics of the unknown before children disease, which occurred in Chernivtsi (Ukraine). The 
cause of many cases of alopecia, which began in this city in August 1988 is still not fully clarified. According to the 
official report of the governmental commission, the last new cases occurred in the middle of November 1988, and the 
reason of the illness was reported as chemical exogenous intoxication. Later this illness became the name “Chernivtsi 
chemical disease”. Nevertheless, the significantly increased number of new cases of the local alopecia was registered 
almost three years and is still not clarified.  
Objective. The comparison of two different versions of the disease: chemical exogenous intoxication and infection. 
Identification of the parameters of mathematical models and prediction of the disease development.  
Methods. Analytical solutions of the contamination models and SIR-model for an epidemic are obtained. The optimal 
values of parameters with the use of linear regression were found.  
Results. The optimal values of the models parameters with the use of statistical approach were identified. The calcula-
tions showed that the infectious version of the disease is more reliable in comparison with the popular contamination 
one. The possible date of the epidemic beginning was estimated. 
Conclusions. The optimal parameters of SIR-model allow calculating the realistic number of victims and other charac-
teristics of possible epidemic. They also show that increased number of cases of local alopecia could be a part of the 
same epidemic as “Chernivtsi chemical disease”. 
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Introduction 

All mathematical models — but particularly mo-

dels for life-science applications — raise the ques-

tion whether the selection of regarded effects is suit-
able for the description of the observations under 
consideration. It is especially difficult to select the 
proper model for an unknown phenomenon as in the 
case of mysterious children disease, which occurred 
in Chernivtsi (Ukraine). The cause of many cases of 
alopecia, which began in this city in August 1988 
and lasted almost three years, is still not fully cla-
rified.  

In such cases, different versions or mathema-
tical models must be taken into account. The cor-
responding unknown parameters (which are used in 
any model) have to be identified with the use of real 
data, which are always available only with restric-
tions. First, there is the quantitative restriction that 
new data is not available or at least available for 
the price of an immense effort only. Second, there is 
a qualitative restriction: life-science data oftentimes 
contains large measurement errors. Third, there is 
a causal restriction: the data alone does not allow dis-
tinguishing between correlation and causal relations. 

 
Here, we consider the development of the un-

known before children disease, which occurred in 
Chernivtsi (Ukraine) [1—4]. In particular, children 
in the age between 1 and 15 years suffered total hair 
loss (alopecia); mucosal lesions; hematological, neu-
ro-psychic and cutaneotrophic disorders.  

In October—November 1988, the governmental 

commission investigated the disease. In that time many 
scientists from the Chernivtsi State University and 
other research institutions were trying to find the rea-
son the disease. 

According to the official report of the govern-
mental commission, the last new cases occurred in 
the middle of November 1988 [2], and the reason of 

the illness was reported as chemical exogenous into-
xication. Later this illness became the name “Cher-
nivtsi chemical disease”. The registered number of 

victims was 162 (this value was later corrected due 
to difficulties of diagnostics of the unknown disease). 
Nevertheless, the chemical agent/agents, which ca-

use the disease, are not found till now, in spite of 
some reports of possible thallium intoxication [2]. 
In that time there were also investigators who sup-

ported the infection version of the disease (e.g., 
Prof. Dekhan-Khodzhaeva from Tashkent, who re-
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ported the presence of a fungus in the blood of ill 

children; Dr. I. Nesteruk, who in that time worked 
at Chernivtsi State University and investigated the 
statistics of the disease). 

In this paper, we will try to analyze ones more 
the statistical data of the Chernivtsi disease with the 
use of different mathematical models, to identify the 

optimal values of their parameters with the use of 
statistical methods and to get closer to the real ca-
uses of the phenomenon. In particular, we will try 

to answer the question which version (chemical exoge-
nous intoxication or infection) is more reliable from 
the mathematical point of view. 

Problem formulation 

The comparison of different models of the 
Chernivtsi children disease dynamics with the use of 

analytical solutions and the linear regression for the 
identification of the model parameters. 

Is the popular contamination version realistic? 

We shall analyze the data, which origins from 
governmental commission. Numbers of concerned 
children are given in Table 1 and present the cases 

with total alopecia. 

Table 1. Number of children concerned by Chernivtsy child-

ren disease (“Chernivtsy chemical disease”) 

Date tj Aj 

05. Aug. 88 1 2 

10. Aug. 88 2 2 

15. Aug. 88 3 2 

20. Aug. 88 4 2 

25. Aug. 88 5 4 

30. Aug. 88 6 7 

04. Sep. 88 7 9 

09. Sep. 88 8 10 

14. Sep. 88 9 12 

19. Sep. 88 10 12 

24. Sep. 88 11 17 

29. Sep. 88 12 19 

04. Oct. 88 13 31 

09. Oct. 88 14 40 

14. Oct. 88 15 45 

19. Oct. 88 16 56 

24. Oct. 88 17 61 

29. Oct. 88 18 73 

The statistics about the further development of 

the disease is not very reliable for our analysis, since: 

1) In November 1988 it was a panic in the 

city; the parents evacuated their children in different 

regions of the USSR (mostly near Chernivtsi); the 

new cases were not registered in proper way or infor-

mation about these cases came with a big delay.  

2) It was difficult to separate the information 

about cases with total and partial alopecia. The par-

tial hair loss is a known illness and the official gov-

ernmental commission didn’t recognize any connec-

tion between the cases with total and local alopecia. 

Table 1 shows that the precise time of the dis-

ease beginning 0t  is unknown. Therefore, the opti-

mization procedures have to determine the optimal 

value of this parameter as well as for other parame-

ters, which will be used in different models. 

The exogenous intoxication was and still is the 

most popular version of the Chernivtsi disease. Let 

us analyze this conclusion of the official commission 

with the use of statistical data presented in Table 1. 

Since we don’t know the location, the begin-

ning time and other characteristics of the contamina-

tion, we have to use the simplest robust models. For 

example, a person becomes ill, after obtaining a cer-

tain amount of the poison. It means that the time deri-

vative of the number of victims V  (t ) must be proporti-

onal to the concentration of the toxic substance G  (t ). 

In the simplest case of linear dependence the corres-

ponding equation can be written as 

                            .V G                         (1) 

Usually the poison concentration depends also 

on the location of the contamination source and can 

be calculated with the use of complicated partial dif-

ferential equations, which are different in cases of air, 

water or soil contamination. Knowing nothing about 

the nature of possible contamination, let us consider 

at first the simplest case of constant poison concen-

tration 0,G G  which appears at some unknown mo-

ment 0t  
and exists during some period of time. 

Then equation (1) has a trivial linear solution: 

                     0 0( ) ( ).V t G t t                    (2) 

In order to check how the registered points fit 

the straight line (2 ), let us use the linear regression [5]. 

For the data presented in Table 1, the equation of 

the linear regression V
 
on t (the optimal straight line, 

minimizing the sum of squared distances between 

registered and theoretical points) looks  

                   ( ) 4.007 15.619V t t                 (3) 

and is shown in Fig. 1 (line 3 ). 



28 Наукові вісті НТУУ "КПІ" 2017 / 5 

 

The regression coefficient is rather high r  0.922. 
We can use the F-test to check the null hypothesis 
that says that a proposed linear model fits well the 
experimental data, presented in Table 1. The experi-
mental value of the Fisher function can be calculated 
with the use of the formula 

                     
2

2

( )

(1 )( 1)

r n m
F

r m




 
                 (4) 

where n  18 is the number of observations, m  2 is 
the number of parameters in the regression equation. 

The corresponding value F  90.73 has to be com-

pared with the critical value Fc (k1, k2) of the Fisher 

function at a desired significance or confidence level. 

The critical values for k1  m  1  1, k2  n  m  16 
are presented in Table 2.  

Table 2. Critical values of the Fisher function for different 

significance levels 

Significance 

level 
0.05 0.01 0.001 0.0001 0.00001

Fc(1,16) 4.49 8.53 16.12 26.36 40.07 

It can be seen that the calculated value F  90.73 
is greater than the critical ones at all the significan-
ce levels presented in Table 2. It means that expe-
rimental points fit well the linear dependence (3). 
Nevertheless, comparing (2) and (3) and estimating 
the starting time of the contamination yields the un- 

realistic value t 0  3.9, since the first cases of the di-

sease were registered approximately 15 days before. 

Therefore, we have to doubt the 
used model with the constant poi-
son concentration. 

It is possible to have the con-
tamination dynamics similar to the 
registered one in the case of an 
increasing concentration of a poison 
only, which drops to zero after mid-
dle of November 1988. We will es-
timate the necessary increase rate of 
a poison concentration in order to 
fit the registered data later.  

Usually the concentration of 
a poison decreases with time. This 
fact allows developing more realis-
tic models of the contamination dy-
namics. In particular, it is possible 
to have a restricted number of vic-
tims in comparison with the con-

stant poison concentration model, which yields the 
unbounded linear increase of the ill persons number 
(see (2)).  

Spots of contamination can move with air of 

water flows. For example, a radioactive contamina-

tion of soil at a fixed place decreases rapidly after a 

severe rain and is transferred to other places. Let us 

consider the most unfavorable situation with a slow 

contamination decrease and neglect these flows. Then 

the dissipation of the poison is connected with dif-

fusion or natural decreasing of a number of radioac-

tive atoms. In both cases, the time derivative of the 

poison concentration is proportional to its current 

value [6]: 

                          G G                          (5) 

where   is the degradation rate.  

Let us consider the dynamics of a one-time con-

tamination by the toxic amount G 0 which occurred 

at the moment of time t 0. Then the set of equati-

ons (1) and (5) has the simple analytic solution 

                  0( )0( ) (1 ).t tG
V t e 

 


             (6) 

The combination of parameters NC  G 0 / 
yields the asymptotical value of the contaminated per-

sons, since V approaches NC at great values of time. 

An example of solution (6) for NC 
 162,   0.2,

   
t 0  0 

is shown in Fig. 1 by curve 2. The horizontal 

asymptote NC  162 is represented by dashed line 1.  

It doesn’t look that the registered points can 

fit the solution (6) at some reliable values of para-
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Fig. 1. Models of contamination. The experimental points corresponding to Table 1 are 

shown by circles. The saturation level NC   162 (according to the report of the 
governmental commission) is shown by the dashed line 1. Contamination with 
dissipation (eq. (6)) is shown by solid line 2. The case of the constant poison 

concentration G  G 0 
(eq. (2)) and linear regression for the experimental points 

are presented by line 3 
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meters NC,
 
, and t 0. To be sure, let us first consider 

the case NC 
 V. Then the function 

              * 0ln(1 / ) ( )CF V N t t               (7) 

can be approximated as follows: 

* 0/ ( )CF V N t t    
 

and for the number of victims we have the simple 

linear relationship 0( )CV N t t  
 
which coincides 

with (2). We have already concluded that function (2) 
can fit the registered data only at unrealistic values 
of the starting time.  

According to (7), *F  can be considered as a 

random variable with the linear distribution. At any 

fixed value of NC we can apply the linear regression. 

E.g., for NC  100 the contamination starting time t 0  

was calculated to be approximately 4.52; r  0.896; 
F  65.14. With increasing of NC 

the value of t0 

diminishes and tends to 3.9 already estimated for the 

large NC . Therefore, all the estimations of the starting 

time are unrealistic.  
These facts allow us to doubt the contamination 

version of the Chernivtsi children disease. It must 
be noted, that presented analysis concerns the exoge-
nous intoxication when the toxic substance comes 
to the human body outside and its concentration, 
degradation, and transfer do not depend on the num-
ber of contaminated people. There are also other 
types of contamination. For example, in the accident 
occurred in 1987 at Goiania (Brazil) an old radio-
therapy source was stolen from a hospital. It was sub-
sequently handled by many people, resulting in four 
deaths and 249 were found to have significant levels 
of radioactive material in or on their bodies [7]. The 
dynamics of such contamination is similar to one of 
the infectious disease. We will concentrate on the in-
fection version of the Chernivtsi disease in the next 
Sections. 

Infection version. Exact and approximate solu-
tions of SIR-equations 

The SIR-model for an infectious disease can be 
written as follows [8, 9]: 

 ,S SI   (8) 

 ,I SI I     (9)  

   .R I   (10) 

The number of susceptible persons is S, in-
fected — I, removed — R; the infection and immu-

nisation rates are 
 
and  respectively. 

Since 0S I R      (see, eqs. (8)—(10)), the sum 

N S I R    must be constant for all moments 
of time and can be treated as the amount of sus-
ceptible persons before the outbreak of an epidemic, 

since 0I R 
 
at 0.t t

 
It must be noted that the 

constant N is not the volume of population Ntotal but 

only the initial number of people sensitive to some 

specific disease. In particular, the ratio N /Ntotal 
may 

be rather small. 
To determine the initial conditions for the set 

of equations (8)—(10), let us suppose an epidemic 

started at some moment of time t 0, when the first in-

fected person appeared. Then 

         0 0 0( ) 1, ( ) 0, ( ) 1.I t R t S t N           (11) 

There are situations when an epidemic starts 
with several or many victims. For example, when 
many people have eaten an infected food or a bacte-

rial weapon has been used, the initial value I0 and 

S0  N  I0 must be used in (11). 

In the case if Chernivtsi disease the small 
amount of victims in August 1988 (see Table 1) allows 
using the initial conditions (11) and removing the 

unknown parameter I0. The same initial conditions 

can be used when a new modification of influenza 
virus has been developed inside a population.  

Very important properties of epidemic can be 
derived from the set of differential equations (8)—(10) 
without solving, see [8, 9]. In particular, it follows 
from (8) and (9) that  

   1, .
dI

dS S

 
   


 (12) 

Integration of (12) with the initial conditions (11) 
yields: 

            ln ln( 1).I S S N N               (13) 

Function I has a maximum at S   (it follows 
from (9)) and tends to zero at infinity, see [8, 9]. 

In comparison, S   0 
and can be calculated from 

a non-linear equation  

 ( 1) .

S N

S N e



    (14) 

Formula (14) follows from (8), (10), and (11) 
and coincides with the relationship from [8, 9] at  

S 0  N  1. An approximate solution of (8)—(10) was 

found by Kermack&McKendrick [8], an exact solu-
tion was proposed by Kendall (see [10]). 

We solve (8)—(10) by introducing the function 

V (t )  I (t )  R (t ), corresponding to the number of 
victims, see [11]. It follows from (9), (10) and (13) 
that: 
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( )[ ln( ) ln( 1)].

V SI

N V N V V N

 

        


  

(15)
 

Integration of (15) yields: 

 1 0( , , )
,

F V N t
t

  



 (16) 

   1

1

.
( )[ ( ) ln( 1)]

V
dU

F
N U N U U N


          (17) 

Thus, for every set of parameters N,
 
, , t0, 

and a fixed value of V, the integral (17) can be cal-
culated and the corresponding moment of time can 
be determined from (16). Then I can be calculated 

from (13) by putting S  N  V, and function R from 

R  V  I.  

If N V 
 
1, the obtained solution of the set 

of differential equations (8)—(10) can be simplified 
with the use of two different approximations for the 

function ln( ) ln( 1).N U N    If we assume 

ln( ) ln( 1) 0,N U N   
 

then  

1 ln /F V N
 

and 

 0( ), .t tV e N      (18) 

According to (18) epidemics start exponentially 

and only two parameters (  N
 
and t 0 ) describe the 

process.  
To follow next stages, let us use the more exact 

approximation: 

ln( ) ln( 1) (1 )/ .N U N U N    
 

Then integral (17) can be expres-
sed as follows:  

1
( )

(1 )
ln ln ,

1

N
F

N N

NV V N V

N N


   

       

 

and the solution has the form: 

    

0

,

1

( )[ ( ) ]
exp .

EN
V

E N

N
E

N

t t N N

N

 


  




     


    

The second approximation (19) yields limited value 

of victims, since V  I  S tends to N at infinity.  
The difference between the exact solution      

of (16), (17) (solid line 3 ), first approximation (18) 
(dotted line 1), and second approximation (19) (da-
shed line 2  ) can be seen in Fig. 2. In this example the 

values of parameters N  162,   1,   0.001443
 

and t0  1.13 were taken for calculations. The Fig. 2 

illustrates that the registered points from Table 1 can 
fit rather good both approximate and exact solutions 
of the SIR epidemic model and can give reliable es-

timations of the starting time t 0, in comparison with 

the contamination model presented in the previous 
Section and in Fig. 1. In order to decide is an un-
known disease infectious or not, it is enough to have 
experimental data for the initial stage of disease (as 
in Chernivtsi case) and to use the simplest exponen-
tial approximation (18). 

Unfortunately, any model of exponential grows 

yield unreliable long time prediction, since any epide-

mic stops with a limited number of victims (as shown 

in Fig. 2 by lines 2 and 3 ). The accuracy of the se-

cond approximation can be also insufficient for the 

long time predictions (especially at large values of ). 
To illustrate this fact let us calculate W  (N  S)/N 

from nonlinear equation (14). 

The second approximation (19) yields W  1 

(i.e., the epidemic stops when all the susceptible per-

sons are infected), but the solutions of (14) shown 

in Fig. 3 for different values of parameter 
 
 100; 

300; 500; 700 (curves 1—4 respectively) can strongly 

differ from W  1. Thus, the range of application of 

the second approximation is also limited and in 

many cases, only exact solution or numerical me-

thods can ensure a good parameter identification.  
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Fig. 2. Infection version. First (eq. (18)) and second (eq. (19)) approximations are 
shown by dotted line 1 and dashed line 2 respectively. The exact solution 
(eqs. (16), (17)) is shown by the solid line 3. The experimental points corres-
ponding to the Table 1 are shown by circles 

(19) 
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Parameter identification in Chernivtsi case 

If for the initial stage of an unknown disease, the 

experimental data about the number of victims jA  

is available at different moments of time ,jt  it is   

necessary to determine do they fit an exponential 
growth (see (18)) or not. For this purpose, different 
methods can be used.  

For example, in 1988 the author applied the 
linear regression (see, e.g., [5]) to the function 

   2 0ln ( ).F V t t     (20) 

Data presented in Table 1 yields the optimal 

values 0.2337,   0 1.13t    with the very high cor- 

relation coefficient r  0.987. The corresponding line 

is shown in Fig. 2 by curve 1. This statistics ba- 

sed method treat the function (20) as a random va-

riable and applies the minimization of the function 

            2
1 0 0

1

( , ) [ ( ) ln ] .
n

j jJ t t t A             (21) 

With the use of summed squared error between 

the model predictions and the measured data, e.g. [11] 

               0( ) 2
2 0

1

( , ) [ ] ,j

n
t t

jJ t e A
       (22)  

other optimal values of parameters can be obtained: 

0.199   and 0 3.8.t    

It can be seen that different minimization me-
thods yield rather different optimal values of parame-
ters. The corresponding lines can differ very slightly 
in the region, where the registered data are available, 
but can give very different long time predictions. 

In the case of contamination the exponential 
grows of the victims number is possible only in the 

case of exponential grows of the 
poison concentration. Really, equa-
tion (1) has the solution 

0( ) exp[ ( )],V t t t  
 

coinciding with (18), if  

        0( ) exp[ ( )].G t t t


  


   (23) 

With the use of (23) we can 
estimate the ratio of poison con-
centrations at moments of time 
corresponding to the first and last 
data registration points (August 5, 
1988 and October 29, 1988 ac-
cordingly, see Table 1). Then 

( 1)/ ( 18) exp( 17 ).G t G t    
 

We have already defined the optimal values of the 

parameter 
 
with the use of data from Table 1 and 

functions (21) and (22) ( 0.2337 and   0.199 re-
spectively). It means that concentration of the toxic 

substance had to increase approximately 53 times 

(or 29 times for the second estimation) during this 

period of time and then drop to zero after the mid-

dle of November 1988.  

We can imagine some hypothetical situations, 

when it could be possible. For example, an explo-

sion at a chemical plant occurred in the beginning 

of August 1988; a leakage of a poison increased yiel-

ding its increasing concentration in the air; after the 

middle of November 1988 this leakage was stopped 

and a wind removed a contamination cloud. We could 

also imagine another case with the increasing poison 

concentration. For example, somebody added a poi-

son to the drink water very intensively in order to 

increase its concentration and rapidly stopped to 

do this after the middle of November 1988. Both 

scenarios look unrealistic and allow us to concentrate 

on the infection version.  
Since the first and second approximations  

(see (18) and (19)) have limited accuracy and abi-
lity for long time predictions, let us concentrate on 
the exact solution (16), (17) and use the fact that 

the random function F 1(V, N, ) has a linear dis-

tribution (see (16)). Then we can apply the linear 

regression for every pair of parameters N and  and 

calculate the corresponding values of t 0 and . The 

optimal (the most reliable) values of N and  cor-
respond to the maximum value of the function F 
presented by eq. (4), since in this case the confi-
dence level will be also maximal. According to for-
mula (4), the maximum of F corresponds to the ma-
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Fig. 3. Solutions of nonlinear equation (14) for the values of parameter 
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ximum of the correlation coefficient r, since n and 
m are fixed. 

Calculations show, that the correlation coeffi-

cient has a global maximum rmax  0.999451150131  

at N  635 and 
 
 358.97. The corresponding opti-

mal values of other two parameters are t 0 = 0.7623 

and 
 
 0.00077922. Then we can calculate the op-

timal value of the parameter     0.27972, the 

saturation level V  458 (with the use of (14)), the 

Fisher criterion value F  825.8 (with the use of (4)). 

Results and discussion 

The exact solution (16), (17) corresponding 
the found optimal values of parameters are shown 
in Fig. 4 by the curve. It can be seen that the satura-
tion level — the total number of possible victims — 

could be much larger than 162 (as reported by the 
governmental commission and shown in Fig. 4 by 
circles) and possible epidemic could have much lon-
ger duration. 

This fact forced to draw our attention to the 
dynamics of the local alopecia cases (shown in Fig. 4 
by triangles). The number of new cases of the local 

alopecia rapidly increased during first 700 days (1205) 
and is much greater than the number of sporadic 
cases typical for the population of 50 000 children in 
Chernivtsi. The average monthly rate of 9 new cases 
of local alopecia was taken for calculations (typical 
for European cities with the same children popula-
tion, see [12, 13]). The crosses represent the differ-
ence between registered cases of local alopecia and 
typical for the 50 000 children population. The sum 
of these unexpected cases of the local alopecia and 
cases of the total alopecia (“Chernivtsi chemical di-
sease” shown by circles) are represented in Fig. 4 by 
squares. 

It can be seen that this sum of the cases of the 
total alopecia and the unexpected cases of the local 
alopecia (squares) has the saturation level, which is 
close to the calculated value of 458. Deviations from 
the theoretical curve for the period between 100 and 
550 days can be explained by the mass children eva-
cuation from Chernivtsi.  

At the beginning of a possible epidemic (when 
only slight dependence on N occurs and the expo-

nential growth with   N  0.35
 
is valid), the num-

ber of victims increased twice every ln 2/  1.98 time 
intervals, i.e., approximately every 10 days. Therefore 
a possible infection does not spread very fast. This 
fact supports the fungus version of disease proposed 
by Prof. Dekhan-Khodzhaeva. 

We can estimate also the possible date of the 
epidemic beginning — August 3 or 4, 1988, since the 

corresponding optimal value t 0 
 0.7623. The new 

disease could happen because of a mutation of an 
infectious agent, which always exist in populations 
(as a new severe influenza is a result of a mutation 
of a common virus). 

The big value of the Fisher criterion (F  825.8) 
obtained for the optimal values of the parameters 
(it is much greater thаn the critical values shown in 
Table 2) demonstrates very high confidence level. 
Nevertheless, this level is also high for the values 
of parameters located in the vicinity of the optimal 

point t 0 
 0.7623; 

 
 0.00077922, since the maximum 

of regression coefficient at this point is not sharp. 
This fact can question the procedure of the parame-
ter identification.  

Another weak feature of the method is connec-
ted with the fact that the estimation of susceptible 
children, who are still present in the population  

S  N  V 
 635  458  177, 

is rather large. It means that these 
children can catch the infection. 
Such situation needs more precise 
analyses with the use of more com-
plicated models (see, e.g., [14]).  

Conclusions 

Simple mathematical models 

for the time dynamics of the Cher-

nivtsi children disease showed that 

the infectious version is more reli-

able in comparison with the popu-

lar contamination one. The optimal 

parameters of SIR-model allow cal-

culating the realistic number of vic-

tims and other characteristics of 
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Fig. 4. Results of parameter identification in Chernivtsi case and comparison with
the experimental data for the total and local cases of alopecia in Chernivtsi
during 1100 days of observation. The curve represents the exact solution (16), (17).
Triangles correspond to the new registered local alopecia cases. The crosses re-
present the difference between registered cases of local alopecia and typical for 
the 50 000 children population. The circles show the cases of the total alopecia
(“Chernivtsi chemical disease”). The sum of the unexpected cases of the local
alopecia and cases of the total alopecia are represented squares 
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possible epidemic. They also show that increased 

number of cases of local alopecia could be a part 

of the same epidemic as “Chernivtsi chemical dis-

ease”. 

Probably, the further research should focus on 

using more complicated mathematical models and 

on finding the infectious agent, which can cause spo-

radic cases of the local alopecia as well.  
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І.Г. Нестерук 

СТАТИСТИЧНІ МОДЕЛІ ДЛЯ ДИНАМІКИ ЧЕРНІВЕЦЬКОЇ ДИТЯЧОЇ ХВОРОБИ 

Проблематика. Прості математичні моделі забруднення та SIR-модель поширення інфекції використовувались для ви-
вчення розвитку в часі невідомої раніше дитячої хвороби, що виникла в Чернівцях (Україна). Причина багатьох випадків ало-
пеції, що почалися в цьому місті в серпні 1988 р., досі докладно не з’ясована. Відповідно до офіційного звіту урядової комісії 
останні нові випадки трапились усередині листопада 1988 р., а причиною хвороби названо хімічну екзогенну інтоксикацію. Піз-
ніше ця хвороба отримало назву “Чернівецька хімічна хвороба”. Однак майже три роки реєструвалась значно збільшена кіль-
кість нових випадків локальної алопеції, що досі не отримало свого пояснення.  

Мета дослідження. Порівняння двох різних версій хвороби: хімічної екзогенної інтоксикації та інфекції; визначення пара-
метрів математичних моделей та прогнозування розвитку хвороби.  

Методика реалізації. Отримано аналітичні розв’язки диференціальних рівнянь для моделей забруднення середовища та 
SIR-моделі для епідемії. За допомогою лінійної регресії знайдено оптимальні значення параметрів моделей. 

Результати досліджень. З використанням статистичного підходу було визначено оптимальні значення параметрів моде-
лей. Розрахунки показали, що інфекційна версія хвороби є більш імовірною порівняно з популярною гіпотезою про отруєння. 
Зроблено оцінку можливої дати початку епідемії. 

Висновки. Оптимальні значення параметрів SIR-моделі дають змогу розрахувати реалістичну кількість жертв та інші ха-
рактеристики можливої епідемії. Вони також свідчать, що збільшена кількість випадків локальної алопеції могла би бути части-
ною тієї ж епідемії, що і “Чернівецька хімічна хвороба”. 

Ключові слова: визначення моделі; ідентифікація параметрів; статистичні методи; математичне моделювання інфекцій-
них хвороб; SIR-модель; моделі забруднення. 

И.Г. Нестерук 

СТАТИСТИЧЕСКИЕ МОДЕЛИ ДЛЯ ДИНАМИКИ ЧЕРНОВИЦКОЙ ДЕТСКОЙ БОЛЕЗНИ 

Проблематика. Простые математические модели загрязнения и SIR-модель распространения инфекции использовались 
для изучения динамики неизвестной раньше детской болезни, возникшей в Черновцах (Украина). Причина множества случаев 
аллопеции, начавшихся в этом городе в августе 1988 г., до сих пор до конца не ясна. В соответствии с официальным отчетом 
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правительственной комиссии последние новые случаи произошли в середине ноября 1988 г., а причиной болезни названа хи-
мическая экзогенная интоксикация. Позже эта болезнь получила название “Черновицкая химическая болезнь”. Однако почти три 
года регистрировалось значительно увеличенное число новых случаев локальной аллопеции, что до сих пор не получило сво-
его объяснения.  

Цель исследования. Сравнение двух разных версий болезни: химической экзогенной интоксикации и инфекции; опреде-
ление параметров математических моделей и прогнозирование развития болезни.  

Методика реализации. Получены аналитические решения дифференциальных уравнений для моделей загрязнения и 
SIR-модели для эпидемии. С помощью линейной регрессии найдены оптимальные значения параметров моделей. 

Результаты исследований. С использованием статистического подхода были определены оптимальные значения па-
раметров моделей. Расчеты показали, что инфекционная версия болезни более вероятна по сравнению с популярной гипоте-
зой об отравлении. Сделана оценка возможной даты начала эпидемии. 

Выводы. Оптимальные значения параметров SIR-модели позволяют рассчитать реалистичное число жертв и другие ха-
рактеристики возможной эпидемии. Они также свидетельствуют, что увеличенное число случаев локальной аллопеции могло 
быть частью той же эпидемии, что и “Черновицкая химическая болезнь”. 

Ключевые слова: определение модели; идентификация параметров; статистические методы; математическое модели-
рование инфекционных болезней; SIR-модель; модели загрязнения. 
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