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STATISTICS BASED MODELS FOR THE DYNAMICS OF CHERNIVTSI CHILDREN DISEASE™

Background. Simple mathematical models of contamination and SIR-model of spreading an infection were used to
simulate the time dynamics of the unknown before children disease, which occurred in Chernivtsi (Ukraine). The
cause of many cases of alopecia, which began in this city in August 1988 is still not fully clarified. According to the
official report of the governmental commission, the last new cases occurred in the middle of November 1988, and the
reason of the illness was reported as chemical exogenous intoxication. Later this illness became the name “Chernivtsi
chemical disease”. Nevertheless, the significantly increased number of new cases of the local alopecia was registered
almost three years and is still not clarified.

Objective. The comparison of two different versions of the disease: chemical exogenous intoxication and infection.
Identification of the parameters of mathematical models and prediction of the disease development.

Methods. Analytical solutions of the contamination models and SIR-model for an epidemic are obtained. The optimal
values of parameters with the use of linear regression were found.

Results. The optimal values of the models parameters with the use of statistical approach were identified. The calcula-
tions showed that the infectious version of the disease is more reliable in comparison with the popular contamination
one. The possible date of the epidemic beginning was estimated.

Conclusions. The optimal parameters of SIR-model allow calculating the realistic number of victims and other charac-
teristics of possible epidemic. They also show that increased number of cases of local alopecia could be a part of the
same epidemic as “Chernivtsi chemical disease”.

Keywords: model identification; parameter identification; statistical methods; mathematical modeling of infection disea-

ses; SIR-model; contamination models.
Introduction

All mathematical models — but particularly mo-
dels for life-science applications — raise the ques-
tion whether the selection of regarded effects is suit-
able for the description of the observations under
consideration. It is especially difficult to select the
proper model for an unknown phenomenon as in the
case of mysterious children disease, which occurred
in Chernivtsi (Ukraine). The cause of many cases of
alopecia, which began in this city in August 1988
and lasted almost three years, is still not fully cla-
rified.

In such cases, different versions or mathema-
tical models must be taken into account. The cor-
responding unknown parameters (which are used in
any model) have to be identified with the use of real
data, which are always available only with restric-
tions. First, there is the quantitative restriction that
new data is not available or at least available for
the price of an immense effort only. Second, there is
a qualitative restriction: life-science data oftentimes
contains large measurement errors. Third, there is
a causal restriction: the data alone does not allow dis-
tinguishing between correlation and causal relations.
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Here, we consider the development of the un-
known before children disease, which occurred in
Chernivtsi (Ukraine) [1—4]. In particular, children
in the age between 1 and 15 years suffered total hair
loss (alopecia); mucosal lesions; hematological, neu-
ro-psychic and cutaneotrophic disorders.

In October—November 1988, the governmental
commission investigated the disease. In that time many
scientists from the Chernivtsi State University and
other research institutions were trying to find the rea-
son the disease.

According to the official report of the govern-
mental commission, the last new cases occurred in
the middle of November 1988 [2], and the reason of
the illness was reported as chemical exogenous into-
xication. Later this illness became the name “Cher-
nivtsi chemical disease”. The registered number of
victims was 162 (this value was later corrected due
to difficulties of diagnostics of the unknown disease).
Nevertheless, the chemical agent/agents, which ca-
use the disease, are not found till now, in spite of
some reports of possible thallium intoxication [2].
In that time there were also investigators who sup-
ported the infection version of the disease (e.g.,
Prof. Dekhan-Khodzhaeva from Tashkent, who re-
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ported the presence of a fungus in the blood of ill
children; Dr. 1. Nesteruk, who in that time worked
at Chernivtsi State University and investigated the
statistics of the disease).

In this paper, we will try to analyze ones more
the statistical data of the Chernivtsi disease with the
use of different mathematical models, to identify the
optimal values of their parameters with the use of
statistical methods and to get closer to the real ca-
uses of the phenomenon. In particular, we will try
to answer the question which version (chemical exoge-
nous intoxication or infection) is more reliable from
the mathematical point of view.

Problem formulation

The comparison of different models of the
Chernivtsi children disease dynamics with the use of
analytical solutions and the linear regression for the
identification of the model parameters.

Is the popular contamination version realistic?

We shall analyze the data, which origins from
governmental commission. Numbers of concerned
children are given in Table 1 and present the cases
with total alopecia.

Table 1. Number of children concerned by Chernivtsy child-
ren disease (“Chernivtsy chemical disease”)

Date 5 A4
05. Aug. 88 1 2
10. Aug. 88 2 2
15. Aug. 88 3 2
20. Aug. 88 4 2
25. Aug. 88 5 4
30. Aug. 88 6 7
04. Sep. 88 7 9
09. Sep. 88 8 10
14. Sep. 88 9 12
19. Sep. 88 10 12
24. Sep. 88 11 17
29. Sep. 88 12 19
04. Oct. 88 13 31
09. Oct. 88 14 40
14. Oct. 88 15 45
19. Oct. 88 16 56
24. Oct. 88 17 61
29. Oct. 88 18 73

The statistics about the further development of
the disease is not very reliable for our analysis, since:

1) In November 1988 it was a panic in the
city; the parents evacuated their children in different
regions of the USSR (mostly near Chernivtsi); the
new cases were not registered in proper way or infor-
mation about these cases came with a big delay.

2) It was difficult to separate the information
about cases with total and partial alopecia. The par-
tial hair loss is a known illness and the official gov-
ernmental commission didn’t recognize any connec-
tion between the cases with total and local alopecia.

Table 1 shows that the precise time of the dis-
ease beginning 7, is unknown. Therefore, the opti-

mization procedures have to determine the optimal
value of this parameter as well as for other parame-
ters, which will be used in different models.

The exogenous intoxication was and still is the
most popular version of the Chernivtsi disease. Let
us analyze this conclusion of the official commission
with the use of statistical data presented in Table 1.

Since we don’t know the location, the begin-
ning time and other characteristics of the contamina-
tion, we have to use the simplest robust models. For
example, a person becomes ill, after obtaining a cer-
tain amount of the poison. It means that the time deri-
vative of the number of victims V' (#) must be proporti-
onal to the concentration of the toxic substance G (7).
In the simplest case of linear dependence the corres-
ponding equation can be written as

V =BG. (1)

Usually the poison concentration depends also
on the location of the contamination source and can
be calculated with the use of complicated partial dif-
ferential equations, which are different in cases of air,
water or soil contamination. Knowing nothing about
the nature of possible contamination, let us consider
at first the simplest case of constant poison concen-
tration G = G, which appears at some unknown mo-

ment 7, and exists during some period of time.
Then equation (1) has a trivial linear solution:

V(t) =BGyt —1y). (2

In order to check how the registered points fit
the straight line (2), let us use the linear regression [5].
For the data presented in Table 1, the equation of
the linear regression V on ¢ (the optimal straight line,
minimizing the sum of squared distances between
registered and theoretical points) looks

V(f) = 4.007¢ —15.619 3)

and is shown in Fig. 1 (line 3).
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Therefore, we have to doubt the
used model with the constant poi-
son concentration.

It is possible to have the con-
tamination dynamics similar to the
registered one in the case of an
increasing concentration of a poison
only, which drops to zero after mid-
dle of November 1988. We will es-
timate the necessary increase rate of
a poison concentration in order to

0 ] (7] [+]
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Fig. 1. Models of contamination. The experimental points corresponding to Table 1 are
shown by circles. The saturation level N, = 162 (according to the report of the
governmental commission) is shown by the dashed line /. Contamination with
dissipation (eq. (6)) is shown by solid line 2. The case of the constant poison
concentration G = G (eq. (2)) and linear regression for the experimental points

are presented by line 3

The regression coefficient is rather high r ~ 0.922.
We can use the F-test to check the null hypothesis
that says that a proposed linear model fits well the
experimental data, presented in Table 1. The experi-
mental value of the Fisher function can be calculated
with the use of the formula

r2(n—m)

T A=r)(m-1) @

where n = 18 is the number of observations, m = 2 is
the number of parameters in the regression equation.
The corresponding value F = 90.73 has to be com-
pared with the critical value F,(k,, k,) of the Fisher
function at a desired significance or confidence level.
The critical values for kj=m -1 =1, k=n-m=16
are presented in Table 2.

Table 2. Critical values of the Fisher function for different
significance levels

Significance | 51 501 | 0.001 | 0.0001 | 0.00001
level
F(1,16) | 4.49 | 8.53 | 16.12 | 2636 | 40.07

It can be seen that the calculated value F'=90.73
is greater than the critical ones at all the significan-
ce levels presented in Table 2. It means that expe-
rimental points fit well the linear dependence (3).
Nevertheless, comparing (2) and (3) and estimating
the starting time of the contamination yields the un-
realistic value 7, ~ 3.9, since the first cases of the di-
sease were registered approximately 15 days before.

14 1l6 T fit the registered data later. .

Usually the concentration of
a poison decreases with time. This
fact allows developing more realis-
tic models of the contamination dy-
namics. In particular, it is possible
to have a restricted number of vic-
tims in comparison with the con-
stant poison concentration model, which yields the
unbounded linear increase of the ill persons number
(see (2)).

Spots of contamination can move with air of
water flows. For example, a radioactive contamina-
tion of soil at a fixed place decreases rapidly after a
severe rain and is transferred to other places. Let us
consider the most unfavorable situation with a slow
contamination decrease and neglect these flows. Then
the dissipation of the poison is connected with dif-
fusion or natural decreasing of a number of radioac-
tive atoms. In both cases, the time derivative of the
poison concentration is proportional to its current
value [6]:

G =G (5)

where ¢ is the degradation rate.

Let us consider the dynamics of a one-time con-
tamination by the toxic amount G, which occurred
at the moment of time #y,. Then the set of equati-
ons (1) and (5) has the simple analytic solution

vy = L9 - estw), (®)
S

The combination of parameters No = BG, /g
yields the asymptotical value of the contaminated per-
sons, since V approaches N at great values of time.
An example of solution (6) for No = 162, ¢ = 0.2,
fo = 0 is shown in Fig. 1 by curve 2. The horizontal
asymptote N = 162 is represented by dashed line 7.

It doesn’t look that the registered points can
fit the solution (6) at some reliable values of para-
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meters N, ¢, and #,. To be sure, let us first consider
the case No>> V. Then the function

Fo=In(1-V/N¢) = ~(t ~ 1) (7)
can be approximated as follows:
FE ~-V/N¢ =—(t-1,)

and for the number of victims we have the simple
linear relationship V' = ¢N(¢f —1,) which coincides
with (2). We have already concluded that function (2)
can fit the registered data only at unrealistic values
of the starting time.

According to (7), F. can be considered as a

random variable with the linear distribution. At any
fixed value of N, we can apply the linear regression.
E.g., for Ny = 100 the contamination starting time ¢,
was calculated to be approximately 4.52; r = —0.896;

F = 65.14. With increasing of N the value of ¢,
diminishes and tends to 3.9 already estimated for the
large N,. Therefore, all the estimations of the starting
time are unrealistic.

These facts allow us to doubt the contamination
version of the Chernivtsi children disease. It must
be noted, that presented analysis concerns the exoge-
nous intoxication when the toxic substance comes
to the human body outside and its concentration,
degradation, and transfer do not depend on the num-
ber of contaminated people. There are also other
types of contamination. For example, in the accident
occurred in 1987 at Goiania (Brazil) an old radio-
therapy source was stolen from a hospital. It was sub-
sequently handled by many people, resulting in four
deaths and 249 were found to have significant levels
of radioactive material in or on their bodies [7]. The
dynamics of such contamination is similar to one of
the infectious disease. We will concentrate on the in-
fection version of the Chernivtsi disease in the next
Sections.

Infection version. Exact and approximate solu-
tions of SIR-equations

The SIR-model for an infectious disease can be
written as follows [8, 9]:

S = -aST, (8)
I =aSI-pl, )
R=pl. (10)

The number of susceptible persons is .5, in-
fected — I, removed — R; the infection and immu-

nisation rates are o and p respectively.

Since S + I + R =0 (see, egs. (8)—(10)), the sum
N =85+1+R must be constant for all moments
of time and can be treated as the amount of sus-
ceptible persons before the outbreak of an epidemic,
since / =R=0 at f<¢, It mustbe noted that the

constant N is not the volume of population N, but
only the initial number of people sensitive to some
specific disease. In particular, the ratio N /N, may
be rather small.

To determine the initial conditions for the set
of equations (8)—(10), let us suppose an epidemic
started at some moment of time f,, when the first in-
fected person appeared. Then

I(ty) =1, R(1y) =0, S(1y)=N 1. (11)

There are situations when an epidemic starts
with several or many victims. For example, when
many people have eaten an infected food or a bacte-
rial weapon has been used, the initial value [, and
So= N -1, must be used in (11).

In the case if Chernivtsi disease the small
amount of victims in August 1988 (see Table 1) allows
using the initial conditions (11) and removing the
unknown parameter /,. The same initial conditions
can be used when a new modification of influenza
virus has been developed inside a population.

Very important properties of epidemic can be
derived from the set of differential equations (8)—(10)
without solving, see [8, 9]. In particular, it follows
from (8) and (9) that

a_ v P, (12)
as S o

Integration of (12) with the initial conditions (11)

yields:

I=vin§S-S+N-vIn(N -1). (13)

Function / has a maximum at .S = v (it follows
from (9)) and tends to zero at infinity, see [8, 9].
In comparison, S, > 0 and can be calculated from
a non-linear equation

S,-N

S, =(N-Te v (14)

Formula (14) follows from (8), (10), and (11)
and coincides with the relationship from [8, 9] at
So= N — 1. An approximate solution of (8)—(10) was
found by Kermack&McKendrick [8], an exact solu-
tion was proposed by Kendall (see [10]).

We solve (8)—(10) by introducing the function
V(t) = I(t) + R(¢), corresponding to the number of
victims, see [11]. It follows from (9), (10) and (13)
that:
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V =aSI
=o(N -V)[vin(N -V)+V —vIn(N -1)]. (15)
Integration of (15) yields:
t:Fl(V,N,v)+oct0’ (16)
(04
4
F=] du . (7
1 (N =U)[V(N -U)+U -vIn(N -1)]

Thus, for every set of parameters N, v, a, &,
and a fixed value of V, the integral (17) can be cal-
culated and the corresponding moment of time can
be determined from (16). Then / can be calculated
from (13) by putting = N - V, and function R from
R=V-1

If N>>V > 1, the obtained solution of the set
of differential equations (8)—(10) can be simplified
with the use of two different approximations for the
function In(N —U) - In(N -1). If we assume

In(N -U)-1In(N -1) = 0,
then
F =mV/N
and

vV =e") y=qaN. (18)

According to (18) epidemics start exponentially
and only two parameters (y = oV and #,) describe the
process.

To follow next stages, let us use the more exact
approximation:

In(N ~U) - In(N —1) = (1-U)/N.

The second approximation (19) yields limited value
of victims, since V'= I + S tends to N at infinity.

The difference between the exact solution
of (16), (17) (solid line 3), first approximation (18)
(dotted line 7), and second approximation (19) (da-
shed line 2) can be seen in Fig. 2. In this example the
values of parameters N = 162, v = 1, a = 0.001443
and 1, = —1.13 were taken for calculations. The Fig. 2
illustrates that the registered points from Table 1 can
fit rather good both approximate and exact solutions
of the SIR epidemic model and can give reliable es-
timations of the starting time #,, in comparison with
the contamination model presented in the previous
Section and in Fig. 1. In order to decide is an un-
known disease infectious or not, it is enough to have
experimental data for the initial stage of disease (as
in Chernivtsi case) and to use the simplest exponen-
tial approximation (18).

Unfortunately, any model of exponential grows
yield unreliable long time prediction, since any epide-
mic stops with a limited number of victims (as shown
in Fig. 2 by lines 2 and 3). The accuracy of the se-
cond approximation can be also insufficient for the
long time predictions (especially at large values of v).

To illustrate this fact let us calculate W= (N - 8,)/N
from nonlinear equation (14).

The second approximation (19) yields W = 1
(i.e., the epidemic stops when all the susceptible per-
sons are infected), but the solutions of (14) shown
in Fig. 3 for different values of parameter v = 100;
300; 500; 700 (curves I—4 respectively) can strongly
differ from W = 1. Thus, the range of application of
the second approximation is also limited and in
many cases, only exact solution or numerical me-
thods can ensure a good parameter identification.

Then integral (17) can be expres- 160 |
sed as follows:
140
Fl = L 120 -
v+(N -v)N
_ 100
><|:11’1NV+1\</(1_V)—11'1]]V\/_I1/:|, X 80 F
B 60
and the solution has the form: 40 -
_ EN-v 20
E + N ) ? 0 | L I 1 L L
0 5 10 15 20 25 30 35 40
N (19) ,
E=—""
N -1 Fig. 2. Infection version. First (eq. (18)) and second (eq. (19)) approximations are
_ _ shown by dotted line / and dashed line 2 respectively. The exact solution
x €Xp oc(l‘ to)[v * (N V)N] . (egs. (16), (17)) is shown by the solid line 3. The experimental points corres-

N

ponding to the Table 1 are shown by circles
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case of exponential grows of the
poison concentration. Really, equa-
tion (1) has the solution

V(1) = exply(t — 1)],
coinciding with (18), if

7 p

G(r) = ;exp[“{(f )] (23)

With the use of (23) we can
estimate the ratio of poison con-

0 — — | 1 1
200 400 600 800 1000 1200

N

Fig. 3. Solutions of nonlinear equation (14) for the values of parameter v = 100; 300;

500; 700 (curves I—4 respectively)
Parameter identification in Chernivtsi case

If for the initial stage of an unknown disease, the
experimental data about the number of victims A ;
is available at different moments of time 7;, it is
necessary to determine do they fit an exponential
growth (see (18)) or not. For this purpose, different
methods can be used.

For example, in 1988 the author applied the
linear regression (see, e.g., [5]) to the function

Fy=1InV =yt - 1,). (20)

Data presented in Table 1 yields the optimal
values y = 0.2337, 1, ~ —1.13 with the very high cor-

relation coefficient » = 0.987. The corresponding line
is shown in Fig. 2 by curve /. This statistics ba-
sed method treat the function (20) as a random va-
riable and applies the minimization of the function

Lot =St ) - AP QD)
1

With the use of summed squared error between
the model predictions and the measured data, e.g. [11]
n
Dy(rtg) =D [ - 4, (22)
[
other optimal values of parameters can be obtained:
vy ~0.199 and 7, ~ -3.8.

It can be seen that different minimization me-
thods yield rather different optimal values of parame-
ters. The corresponding lines can differ very slightly
in the region, where the registered data are available,
but can give very different long time predictions.

In the case of contamination the exponential
grows of the victims number is possible only in the

centrations at moments of time
corresponding to the first and last
data registration points (August 3,
1988 and October 29, 1988 ac-
cordingly, see Table 1). Then

G(t =1)/G(t = 18) = exp(~17y).

1400 1600

We have already defined the optimal values of the
parameter y with the use of data from Table 1 and
functions (21) and (22) (y = 0.2337 and y = 0.199 re-
spectively). It means that concentration of the toxic
substance had to increase approximately 53 times
(or 29 times for the second estimation) during this
period of time and then drop to zero after the mid-
dle of November 1988.

We can imagine some hypothetical situations,
when it could be possible. For example, an explo-
sion at a chemical plant occurred in the beginning
of August 1988; a leakage of a poison increased yiel-
ding its increasing concentration in the air; after the
middle of November 1988 this leakage was stopped
and a wind removed a contamination cloud. We could
also imagine another case with the increasing poison
concentration. For example, somebody added a poi-
son to the drink water very intensively in order to
increase its concentration and rapidly stopped to
do this after the middle of November 1988. Both
scenarios look unrealistic and allow us to concentrate
on the infection version.

Since the first and second approximations
(see (18) and (19)) have limited accuracy and abi-
lity for long time predictions, let us concentrate on
the exact solution (16), (17) and use the fact that
the random function F,(V, N, v) has a linear dis-
tribution (see (16)). Then we can apply the linear
regression for every pair of parameters N and v and
calculate the corresponding values of ¢, and a. The
optimal (the most reliable) values of N and v cor-
respond to the maximum value of the function F
presented by eq. (4), since in this case the confi-
dence level will be also maximal. According to for-
mula (4), the maximum of F corresponds to the ma-



32 Haykosi sicti HTYY "KMI"

201715

ximum of the correlation coefficient r, since » and
m are fixed.

Calculations show, that the correlation coeffi-
cient has a global maximum r,,, = 0.999451150131
at N =635 and v = 358.97. The corresponding opti-
mal values of other two parameters are #, = 0.7623
and a = 0.00077922. Then we can calculate the op-
timal value of the parameter p = av = 0.27972, the

saturation level V,, = 458 (with the use of (14)), the
Fisher criterion value F= 825.8 (with the use of (4)).

Results and discussion

The exact solution (16), (17) corresponding
the found optimal values of parameters are shown
in Fig. 4 by the curve. It can be seen that the satura-
tion level — the total number of possible victims —
could be much larger than 162 (as reported by the
governmental commission and shown in Fig. 4 by
circles) and possible epidemic could have much lon-
ger duration.

This fact forced to draw our attention to the
dynamics of the local alopecia cases (shown in Fig. 4
by triangles). The number of new cases of the local
alopecia rapidly increased during first 700 days (120x5)
and is much greater than the number of sporadic
cases typical for the population of 50 000 children in
Chernivtsi. The average monthly rate of 9 new cases
of local alopecia was taken for calculations (typical
for European cities with the same children popula-
tion, see [12, 13]). The crosses represent the differ-
ence between registered cases of local alopecia and
typical for the 50 000 children population. The sum
of these unexpected cases of the local alopecia and
cases of the total alopecia (“Chernivtsi chemical di-
sease” shown by circles) are represented in Fig. 4 by

squares.

700 T T T T T T T T T vvv—v

T v
gvVvvV
m600‘ vvvv =
=] gnnnnnunnguunnq
S 500 - U,Eg =
= nge
o 400 F o8 w T U T S I S
5) g 8w o
+

§300- nu oV ext 4
£ 0%g% L+*
E 200+ oo . J
Z. 00886100000oooooooooooooooooooooo

100 - vyt i

¥+

0 20 40 60 80 100 120 140
Time (1 corresponds to 5 days)

1 1 il l
160 180 200 220
Fig. 4. Results of parameter identification in Chernivtsi case and comparison with

the experimental data for the total and local cases of alopecia in Chernivtsi
during 1100 days of observation. The curve represents the exact solution (16), (17).
Triangles correspond to the new registered local alopecia cases. The crosses re-
present the difference between registered cases of local alopecia and typical for
the 50 000 children population. The circles show the cases of the total alopecia
(“Chernivtsi chemical disease”). The sum of the unexpected cases of the local
alopecia and cases of the total alopecia are represented squares

It can be seen that this sum of the cases of the
total alopecia and the unexpected cases of the local
alopecia (squares) has the saturation level, which is
close to the calculated value of 458. Deviations from
the theoretical curve for the period between 100 and
550 days can be explained by the mass children eva-
cuation from Chernivtsi.

At the beginning of a possible epidemic (when
only slight dependence on N occurs and the expo-
nential growth with y = aV = 0.35 is valid), the num-
ber of victims increased twice every In 2/y =~ 1.98 time
intervals, i.e., approximately every 10 days. Therefore
a possible infection does not spread very fast. This
fact supports the fungus version of disease proposed
by Prof. Dekhan-Khodzhaeva.

We can estimate also the possible date of the
epidemic beginning — August 3 or 4, 1988, since the
corresponding optimal value #, = 0.7623. The new
disease could happen because of a mutation of an
infectious agent, which always exist in populations
(as a new severe influenza is a result of a mutation
of a common virus).

The big value of the Fisher criterion (F = 825.8)
obtained for the optimal values of the parameters
(it is much greater than the critical values shown in
Table 2) demonstrates very high confidence level.
Nevertheless, this level is also high for the values
of parameters located in the vicinity of the optimal
point 7, = 0.7623; a. = 0.00077922, since the maximum
of regression coefficient at this point is not sharp.
This fact can question the procedure of the parame-
ter identification.

Another weak feature of the method is connec-
ted with the fact that the estimation of susceptible
children, who are still present in the population

Se=N— V, =635 458 = 177,

is rather large. It means that these
children can catch the infection.
Such situation needs more precise
analyses with the use of more com-
plicated models (see, e.g., [14]).

Conclusions

Simple mathematical models
for the time dynamics of the Cher-
nivtsi children disease showed that
the infectious version is more reli-
able in comparison with the popu-
lar contamination one. The optimal
parameters of SIR-model allow cal-
culating the realistic number of vic-
tims and other characteristics of
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I.[. Hectepyk
CTATUCTWYHI MOZENI ANA OUHAMIK/ YEPHIBELLKOT ANTAYOI XBOPOBM

Mpo6nemartuka. MpocTi matemaTnyHi Mogeni 3abpyaHeHHs Ta SIR-Moaenb NoLMpeHHs iHdbeKLii BUKOPUCTOBYBanucb Anst BU-
BYEHHS1 PO3BUTKY B Yaci HEBiOMOI paHile AnTs4oi xBopobu, Wwo BuHMKNA B YepHiBusx (YkpaiHa). MpuynHa Garatbox BUMNagkis ano-
neuii, Wo noyanucst B UboMy MicTi B cepnHi 1988 p., goci goknagHo He 3'sicoBaHa. BignosigHo [0 odiuiiHOro 3BiTy ypsiAOBOiI KOMICIT
OCTaHHi HOBi BMNagKn Tpanunucb ycepeauHi nuctonaaa 1988 p., a npuymHolo XBopoby Ha3BaHO XiMiYHY eK30reHHy iHTokcukauit. Mis-
Hilwe usa xBopoba oTpumarno Ha3By “YepHiBeubka xiMiuHa xBopoba”. OgHak maike TpU PoKU peecTpyBanachb 3HayHo 36inbLueHa Kinb-
KiCTb HOBMX BUMAAKIB NTOKanNbHOI anonevwji, Wo A0Ci He OTPUMano CBOro MOSICHEHHS.

MeTa pgocnigxeHHs. [opiBHSAHHA ABOX Pi3HMX BepCit XBOPOOM: XiMiYHOT €K30reHHOT iHTOKCKKaLii Ta iHgeKLil; BU3Ha4YeHHs1 napa-
MeTpiB MaTeMaTUYHUX MoJenel Ta NPOrHo3yBaHHsi PO3BUTKY XBOPOOU.

MeToauka peanisauii. OTpMmMaHO aHamniTUYHI PO3B’A3kM AndepeHUianbHNX PiBHAHb ANA MoAernen 3abpyaHeHHs cepefoBuLLa Ta
SIR-mogeni ansa enigemii. 3a gonomoroto NiHiHOT perpecii 3HangeHo onTUMarbHi 3HaYeHHs NapameTpiB Mogenen.

Pe3ynbTatn gocnigxeHb. 3 BUKOPUCTAHHAM CTaTUCTUYHOIO Migxody 6yno BU3Ha4YeHo onTUMarbHi 3Ha4YeHHs napameTpiB Moae-
nen. PospaxyHkn nokasanu, Lo iHdeKuUiiHa Bepcis XBopobu € BinbLl iMOBIPHOK MOPIBHAHO 3 MOMYMSAPHOIO FiMOTE30l0 NMPO OTPYEHHS.
3po6neHo oLiHKy MOXNMBOT AaTu novaTtky enigemii.

BucHoBku. OnTumanbHi 3Ha4YeHHs napameTpiB SIR-moaeni gaTb 3Mory po3paxyBaTu peaniCTUYHY KinbKiCTb XepTB Ta iHLWi xa-
pPaKTEPUCTUKN MOXINNBOI enigeMii. BoHn Takox cBigyaTb, Wo 36inblueHa KinbkicTb BUNAAKiB nokanbHOI anonewii morna 6u 6ytn yactu-
HOIO TiEl X enigemii, Wwo i “YepHiBeubka xiMmiyHa xBopoba”.

Knio4yoBi cnoBa: Bu3HaveHHs Mofeni; ineHTudikauis napaMmeTpiB; CTaTUCTUYHI MeTOAW; MaTemMaTu4yHe MOLENOBaHHS iHpeKUin-
HUX xBopo6; SIR-Moaenb; moaeni 3abpyaHEHHS.

W.I". Hectepyk

CTATUCTUYECKME MOJENW ANnA AUMHAMUKNA YEPHOBWLIKOM OETCKOW BONE3HU

Mpo6nemaTuka. MpocTble MaTemaTuyeckne Moaenu sarpasHeHns u SIR-mogens pacnpocTpaHeHnst MHEKLIMM UCNONL30BanNUCh
ANS M3y4eHus OMHaAMMKN HEW3BECTHOWN paHblue JeTckon BonesHn, BosHuKwel B YepHosuax (YkpanHa). MpuunHa MHOXeCTBa Cryvaes
annoneuumn, Ha4yasLIKXCS B 3TOM ropofe B aerycte 1988 r., 4o cux Nop [0 KoHUa He sicHa. B cooTBeTCTBMM C ouLManbHLIM OTYETOM
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NpPaBUTENECTBEHHON KOMUCCUM MOCTEAHME HOBbIE CIlydaun Npou3oLwwnm B cepeguHe Hos6psa 1988 r., a npuunHon 6onesHn HasBaHa Xu-
MUYecKasi 3K30reHHast MHTOKcuKaumst. [o3xe aTa GonesHb nonyyuna HasBaHue “YepHoBuLKas xumudeckas 6onesHs”. OgHako NoYuTu Tpu
rofa permcTpupoBanoch 3HaUYUTENBHO YBENTMYEHHOE YMCMO HOBBIX CIlyYaeB NoKarnbHON annoneumm, YTo 40 CUX Mop He Morny4vuro cBo-
ero oobsICHEeHUS.

Llenb nccnepoBanus. CpaBHeHVe ABYX pa3HbiXx BeEpCuil 60Ne3HN: XMMUYECKOW SK30r€HHON MHTOKCHKaLUMK 1 MHAEKUMK; onpeae-
reHve napamMeTpoB MaTeMaTUYECKUX MOAENEW U NPOrHO3MPOBAHWE Pa3BUTUS GOMNE3HU.

MeToguka peanusauuu. onydeHbl aHanMTUYeckMe pelleHus amddepeHumnanbHbiX YpaBHEHUA ANs MOAenen 3arpsa3HeHns u
SIR-moagenu ans anugemmn. C NnOMOLLBIO NIMHENHOW perpeccumn HangeHbl OnTUManbHble 3Ha4YeHUA NnapameTpoB MOLENEN.

Pe3ynbTathbl uccnegoBaHuit. C 1CNoNb3oBaHNEM CTaTUCTUYECKOTO NoaxoAda Obinu onpefeneHsl onTMManbHble 3Ha4YeHUs na-
pameTpoB Mofenein. PacyeTbl nokasanu, Yto MHEKLMOHHasi Bepcus 6onesHn 6onee BeposTHA NO CPABHEHUIO C MOMYNSIPHON runoTe-
3011 06 oTpaBneHun. CaenaHa oLeHka BO3MOXHOW AaTbl Ha4ana anugemMun.

BbiBogbl. OnTMManbHble 3HadYeHns napameTpoB SIR-Mogenu Nno3BonsaiT paccymMTaTb peannucTuyHoe YUCIO XepTB U Apyrue xa-
PaKTEPUCTUKN BO3MOXHOM anuaeMun. OHU Takke CBUAETENbCTBYIOT, YTO YBEIIMYEHHOE YMCIO CIy4aeB JOKaNbHOW anioneuum mMorno
ObITb YACTbIO TOW e ANMaeMumn, 4YTo 1 “YepHoBuLKan XMmMmnyeckas 6onesHs”.

KnioueBble cnoBa: onpegeneHne Moaenu; naeHTudukaumsa napaMeTpoB; CTaTUCTUYECKUE METOAbl; MaTeMaTU4eckoe Moaenu-
poBaHue MHPEKUMOHHBIX BoneaHelnt; SIR-Moaenb; Moaenu 3arpsisHeHus!.

PexomenmoBaHa Panoto Hapniitna no penaxiii
¢akyIbTeTy NPUKIATHOI MaTEMATUKK 31 ciung 2017 poky
KIII im. Iropst CikopcbKoro



