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BOUNDEDNESS OF LEBESGUE CONSTANTS AND INTERPOLATING FABER BASES™

Background. We investigate the relationship between the boundedness of Lebesgue constants for the Lagrange poly-
nomial interpolation on a compact subset of R and the existence of a Faber basis in the space of continuous func-
tions on this compact set.

Objective. The aim of the paper is to describe the conditions on the matrix of interpolation nodes under which the
interpolation of any continuous function coincides with the decomposition of this function in a series on the Faber
basis.

Methods. The methods of general theory of Schauder bases and the results which describe the convergence of inter-

polating Lagrange processes are used.

Results. The structure of matrices of interpolation nodes which generate the interpolating Faber bases is described.
Conclusions. Every interpolating Faber basis is generated by the interpolating Lagrange process with the interpolating

matrix of a special kind and bounded Lebesgue constants.
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Introduction

The polynomial Lagrange interpolation is an
important and widely used method for approxima-
tion of continuous functions. It is well known that
if the domain of the function is massive enough, e.g.
with nonnegative Lebesgue measure, then even under
unlimited interpolation node increase the uniform
convergence of the interpolation process can be gua-
ranteed only for sufficiently smooth functions. For
today, the divergence of Lagrange interpolation pro-
cesses is studied in details. On the convergence of
such processes, it is known much less. Namely, in
the papers of S. Mergelyan [1] and P. Korovkin [2]
the infinite compact subsets and the matrices of in-
terpolation nodes which generate the uniform conver-
gent sequences of interpolation polynomials for every
continuous function were constructed. Moreover, the
conditions of the uniform convergence of interpola-
ting Lagrange polynomials for monotone sequences of
interpolation nodes correlated to Faber bases of spe-
cial kind (the interpolating Faber bases) were descri-
bed by J. Obermaier and R. Szwarc (see, [3] and [4]).
Note that J. Obermaier and R. Szwarc considered
only the interpolation of function defined on com-
pact subsets with unique limit points.

In this paper, we mainly study the uniform con-
vergent Lagrange interpolation processes which cor-
respond to arbitrary Faber bases.

For convenience, we recall the terminology
which will be necessary for future.

i corresponding author: viktoriiabilet@gmail.com

Let
X1
X102 X202
m = {xk,n} =
xl,n 'x2,n xn,n

be an infinite triangular matrix which elements
(nodes) are real numbers satisfying the condition
Xy on # X, , forall distinct &, &, €{l,...,n} and eve-

ry n e N. Then let’s define the fundamental polyno-
mials [ , =1, ,(9M,) as

by n(X) = L, (N, )

S . )

b
1<k<n,k=k, (Xpyn = Xien)

[ . form a basis at the linear

s tn,n

The polynomials /, ,,,..
space H, ; of all real algebraic polynomials of de-
gree at most n—1. In particular, we have /;; =1.

Let X be an infinite compact subset of R. Let
us denote by Cy the Banach space of continuous

functions f: X — R with the supremum norm

£ Iy := sup{| f(x)]: x € X}
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and write M < X if M={x; ,} and x; , € X for all
neN and k<n For feCy, Mc X and neN,
the Lagrange interpolating polynomial L,(f,90,-) is

the unique polynomial from H, which coincides with f

at the nodes x; ,,;, kK =1,...,n+1. Using the fun-
damental polynomials we can represent L,(f,9,) in
the form

n+l

Ln(fs ma ) = z f(xk,n+l)lk,n+l(m’ ) (2)
k=1

For given X, 9 < X, and ne N, the Lebes-
gue function A,(9,-) and the Lebesgue constant
A, x(9M) can be defined as

Ly (M, x) = sup{| L,(f, D, x)|: | fllx<1}, xeR, (3)
and, respectively, as
A, x (M) = sup{i, (M, x): x € X}. 4)

The mappings
Lo Cx > Cx  with £, 0,(f) = L,(f,9,) (5)
are bounded linear operators having the norms
€0l = Ay (M0). (6)

For every infinite compact set X c R and M c X
it is easy to prove that the equality

n+l

kn(f)ﬁ, X) = Z |lk,n+l (E)Jt, X)l (7)
k=1

holds for each x e R.
Remark 1. Using formulas (1), (4) and (7), we
can define the Lebesgue functions A,(901,-) and the

Lebesgue constants A, y(9%) for arbitrary nonempty

set X < R and any interpolation matrix 9t c R.

In what follows we will denote by BLC (boun-
ded Lebesgue constants) the set of compact nonvoid
sets X < [-1,1], for each of which there is a matrix

M < [-1,1], such that the corresponding sequence
(A x (9)) ey 1s bounded, i.e.,

Apx (M) <c (3)
holds for some ¢ >0 and every n e N.

Problem statement

The aim of the paper is to find the conditions
under which the Lebesgue constants A, x(97) are

bounded for the matrices 91 having the form

X1
X2 X2
xl,n x2,n xn,n

Boundedness and convergence in Lagrange in-
terpolation

J. Szabados and P. Vértesi, [5], write: “... in the
convergence behavior of the Lagrange interpolatory

polynomials ... the Lebesgue functions ... and the
Lebesgue constants ... are of fundamental impor-
tance...”.

Proposition 2. Let X be an infinite compact
subset of R and let 9 < X. The following state-
ments are equivalent.

(i) The inequality

limsup A, x(90) < 0
neN ’

holds.
(ii) The limit relation

lim| £ = L,(£, 9,y = 0 ©

is valid for every f € Cy.
(iii) The inequality

limsup|| L, (f,9M,-)||y < oo

n—0

(10)

holds for every f e Cy.

Proof. The linear operator £,,, is a projec-
tion of Cy onto H,. Hence, by Lebesgue’s lemma,
see [6, Ch. 2, Pr. 4.1], we have the inequality

|L,(f,9m,) = flly <A+ A, x)E,(f)  (11)

where E,(f) is the error of the best approximation
of f by H, in Cy. By the Stone—Weierstrass theo-
rem, the continuous function f is uniformly appro-
ximable by polynomials on X, i.e., ’111_r>£10 E,(f)=0.
Now (i) = (ii) follows.

The implication (ii) = (iii) is trivial.

Suppose that (iii) holds. To prove (iii) = (i)
note that equality (10) implies the boundedness of
sequences

(1€0,m (D) nen = ULy (9 ) ) pen

for every feCy. Since all £, 4,:Cy - Cy are
continuous linear operators and Cy is a Banach
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space, the Banach—Steinhaus theorem gives us the
inequality

sup||.L,, gl < oo
neN

The last inequality and (6) imply (i). o
There is a pointwise analog of Proposition 2.
Proposition 3. Let X be an infinite compact sub-

set of R and let x € X. The following statements are
equivalent for every Ot < X.
(i) The inequality

limsup A,,(9, x) < oo (12)
holds.
(ii) The limit relation
lim L, (f, 9, x) = f(x)
is valid for every f e Cy.
(iii) The inequality
limsup|L,(f, DM, x)| < (13)

n—0

holds for every f e Cy.

Proof. Using (3) instead of (6) and the ine-
quality

| £ (o) = L, (f, 9, 0)] < (1+ 4, (9, X)) E, (f)

(see [5, p. 6]) instead of (11), we can prove (i) = (ii)
as in the proof of Proposition 2. The implication
(i) = (iii) is trivial. The Banach—Steinhaus theorem
and (3) give us the implication (iii) = (i). o

Corollary 4. Let X be an infinite compact sub-
set of R and let 9t — X. The sequence (1,(9M,)),cn
is pointwise bounded on X if and only if the sequen-
ce (L,(f,9M,),n Is pointwise convergent to f on
X for every f eCy.

For the classical case X =[-1,1] there exist a lot

of important results connected with the unbound-
edness of the Lebesgue constants and the Lebesgue
functions.

In 1914, G. Faber [7], for every matrix 91

c [-1,1], proved the existence of f e, satis-

fying the inequality

lim Sup”f - Ln(.fa mt’ ')”[—l,l] >0 (14)
that, by Proposition 2, is an equivalent for
lll’l’l Sup An’[il’l](m) = 00, (15)

n—0

In 1931, S.N. Bernstein [8] found that for every
M c [-1,1] there are f e G, and x, € [-1,1] such

that
limsup| L,(f, M, x;)| = .

n—0

(16)

This equality together with Proposition 3 gives the
existence of a point x, € [-1,1] satisfying

limsup &, (9M, x,) = . (17)

h—0

In 1980, P. Erdés and P. Vértesi [9] proved the
following theorem.
Theorem 5. Let 9t < [-1,1]. Then there is f

€ () such that limit relation (16) holds for almost
all x, e[-1,1].

This theorem implies the following corollary.
Corollary 6. Let X be an infinite compact sub-

set of R. Let us denote by m;(X) the one-dimen-
sional Lebesgue measure of X. Write

a=min{x: x e X} and b= max{x:x e X}.

If there is 9 < [a, b] such that inequality (12) holds
for every x € X, then X is nowhere dense and

my(X) = 0. (18)

Proof. Since the fundamental polynomials are
invariant under the affine transformations of R, we

may suppose that a=-1 and b=+1. Now, (18)
follows from Theorem 5. Equality (18) implies that
the interior of X is empty, IntX =d. Since X is

compact, we have X = X, where X is the closure

of X. Consequently, the equality IntX =& holds,
it means that X is nowhere dense. O

Corollary 7. If X belongs to BLC, then X is
nowhere dense in R and its one-dimensional Lebes-
gue measure is zero.

Example 8. If X ={x;,x,,..., %, X4, 1,.--} IS @
dense subset of [-1,1] and the matrix 9t is defined
such that x; , = x, for all neN and k € {1,...,n},
then we evidently have the equalities

limsup A, (9, x) = }lql_r)n (M, x) =1

n—0

19)

for every x € X. Consequently, the compactness
of X cannot be dropped in Corollary 6.

It was proved by A.A. Privalov in [10], that
there are a countable set X <[0,1] and a positive
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constant ¢; = ¢;(X), such that 0 is the unique ac-
cumulation point of X and the inequality

A, x(O) 2 ¢ In(n+1)

holds for every ne N and every 9t c [-1,1].
Remark 9. There is a constant ¢, > 0 for which

Ay < ¢y In(n +1)

holds for every neN with 9% ={x, ,} based on

Qk-n
2n

the Chebyshev nodes x; , = cos . For details

see [11].

The example of perfect set X € BLC was ob-
tained by S.N. Mergelyan [1].

P.P. Korovkin [2] found a perfect X < [-1,1]
and a matrix 9 such that, for every f e Cy, the

sequence (L .(f,M,")),y uniformly tends to £,

SUpA , (M) < oo.

neN ’
At the same paper [2], he wrote that there is a mo-
dification of X with bounded sequence of Lebesgue
constants.

Corollary 7 indicates that every X € BLC must
be small in a very strong sense. Moreover, the exam-
ples of A.A. Privalov, P.P. Korovkin, and S.N. Mer-
gelyan show that the properties “are countable” and
“belong to the class BLC” not linked too closely.

Faber bases and Lagrange polynomials

In what follows we study the boundedness of
the Lebesgue constants A, y (M) for the matrices M

having the form

X
X X%
X Xy .. X,

The obtained results are inspired by some ideas of
J. Obermaier and R. Szwarc [3, 4].
Let X be an infinite compact subset of R.
Definition 10. A Faber basis in Cy is a sequen-
ce p=(p; )y Of real algebraic polynomials satis-

fying the following conditions:
(i) for every f € Cy there is a unique sequence

(a; )y of real numbers such that

f= z i Prs (20)
k=1
(ii) for every k € N the polynomial p, has the
degree k-1, degp, =k -1.
Remark 11. As usual, equality (20) means that

=0.
X

lim
n—>0

n
S - Zakpk
k=1

Let p=(p)ren be a Faber basis in Cy. For
every f e Cy we shall denote by S, ;(f) the par-

n
tial sum )’ a; p;, of series (20), i.e.,
k=1

S, =3 ap.
k=1

If neN is given, then the partial sum opera-
tor S, ;: Cxy — Cyx is a linear operator with the ran-

ge H, | and the domain Cy. Similarly, for an inter-
polation matrix 9t ¢ X, the operator, defined by (5),

Lo Cx = Cy,

has the same range and domain. Moreover, the li-
near operators S, ; and £,,, are projections on

H, |, ie., we have
Sn,[;(p) = Sn,im(p) =p

for every p e H, ;. In what follows we study some
conditions under which the operators S, ; and £,y

are the same for every n € N.
Definition 12. A Faber basis p = (p; )iy 1S

interpolating if there is a sequence (x;);.y of dis-
tinct points of X such that the equality

Sk,[;(f)(xk) = f(x)

holds for all feCy and k e N.
If p and (x;),.y satisfy the above condition,

21

then we say that p is interpolating with the nodes

(xk)keN'

Remark 13. The interpolating Faber bases are
a particular case of the interpolating Schauder bases
for a space of continuous functions on a locally com-
pact metric space, [12, Definition 1.3.1].

The following lemma is similar to Proposition
1.3.2 from [12].
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Lemma 14. Let X be an infinite compact sub-
set of R, let p = (p, )y be a Faber basis in Cy and
let (x; ).y be a sequence of distinct points of X.
Then p is interpolating with the nodes (x; ),y if
and only if

Pe(x)#0 and  p(x;)=0 (22)

forevery k e N and j <k.

Proof. Suppose that p is interpolating with
the nodes (x;),.n. We must show that (22) holds
forall k e N and j < k. Since, for each f e Cy, the
representation

(23)

is unique, we have

P, =0 (24)

for every k € N. The equality deg p, =0 together

with (24) implies (22) for k=1. Let k>2. The
uniqueness of representation (23) gives us the equa-
lities

15D = o= Sy () = 0. (25)

Since p is interpolating with the nodes (x; ).y, (25)
implies

Pe(xp) = ... = p(x) = 0.

If p.(x;)=0, then p, has k distinct zeros that
contradicts the equality deg p, = k —1. Condition (22)

follows.
Let (22) hold for all k e N and j < k. Then

from (23) we obtain
FOe) = Y ap(x) = Y agp(x,) = S, ,()(x,)
k=1 k=1

for every ne N. Thus, p=(p;);y Is interpolating
with the nodes (x;)i.y. O

Corollary 15. Let X be an infinite compact sub-
set of R and let p=(p,)rny be an interpolating

Faber basis in Cy. Then there is a unique sequence
(%) gen- of distinct points of X such that p is inter-
polating with nodes (x;);x-

Proof. Let p be interpolating with nodes

(%) ren- By Lemma 14 the point x,; is the unique zero
of the polynomial p,, the point x, can be characte-
rized as the unique point of X for which p;(x,) =0
and p,(x,) # 0 and so on. O

Lemma 14 implies also the following
Proposition 16. Let X be an infinite compact
subset of R. If p = (p, )iy IS an interpolating Faber

basis in Cy with nodes (x;),.y, then for every se-
quence A = (A )iy Of nonzero real numbers the se-
quence

D = O Pi ke
is also an interpolating Faber basis with the same

nodes (x;),.y. Conversely, if §=(g;);.y and p
= (P )rey are interpolating Faber bases with the same

nodes, then there is a unique sequence i = (i)zey Of

nonzero real numbers such that
g=pp= (Hkpk)keN-

For given nodes (x;),.y, the interpolating Fa-
ber basis p = (p; )iy, if such a basis exists, can be
uniquely determined by the natural normalization

pi(x) =1
for every k e N.
Definition 17 [3]. A Faber basis p = (py )iy 1S
called a Lagrange basis with respect to the sequence

(xk) keN if

(26)

p(x)=1 and p(x;)=0

forall ke N and j<k.

The following example gives us another con-
dition of interpolating Faber basis uniqueness cor-
responding to given nodes. Recall that a polynomial
is monic if its leading coefficient is equal to 1.

Example 18. Let 7 =(n; ),y be an interpola-

ting Faber basis with nodes (x;),.y and monic po-
lynomials x,. Then n,n,,...,ny,... are the Newton
polynomials,

1 if k=1,

k-1 (27)

[TGx-x)) if k=2
j=1

T (x) =
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The sequence p = (py)ien>
1 if k=1,

if k>2, (28)

is a Lagrange basis with respect to (X} );.x-

Theorem 19. Let X be an infinite compact sub-
set of R and let (x;),.y be a sequence of distinct

points of X. The following two statements are equi-
valent.

(i) There is an interpolating Faber basis with
the nodes (x;);cy-

(ii) For every f € Cy we have

F=S flx (29)
k=1

where, for each k € N, n; is the Newton polynomi-
als defined by (27) and f[x,...,x;] is the divided
difference of the function f,

fal=f(q), flx,x]= f(_XI) L) ,.

ey

X1—Xy X~ X
k S(x;)
f[xla'“’xk]zz k !
7 H (xj—x,
i=li#j

Proof. (i) = (ii). If (i) holds, then by Lem-
ma 14, = (m; ),y IS an interpolating Faber basis
in Cy with nodes (x;),.y. Consequently, for every
J e Cy there is a unique sequence (y; ),y such that

= ZJ’kak- (30)
k=1
Since the basis 7 is interpolating, we have
nm(x)) = f(x),
Yim (%) + »omy () = f(x,), 31)

N (X)) + »amp (X)) + o+ Y (X)) = f(x)-
The polynomial
f[xl]TCl +...+ f[xl,...,xk]ﬂ:k

coincides with the function f at the points x,..., X;.
(See Theorem 1.1.1 and formula (1.19) in [13] for
details). Since linear system (31) has a unique so-
lution, we have

v =fIxl sy = flx,ox ] (32)

Equality (29) follows.

(ii) = (i). Let (ii) hold. Then, the sequence &
=(m )y 18 an interpolating Faber basis in Cy if
and only if (30) implies (32) for every f € Cy and
every k € N, that follows from the uniqueness of so-
lutions of (31). o

Theorem 20. Let X be an infinite compact sub-
set of R and let M = {x, ,} be an interpolation mat-

rix with the nodes in X. The following conditions
are equivalent.
(i) The space Cy admits a Faber basis p

= (P )ken such that the equality

Sn,]’) = En,im (33)

holds for every n e N.
(ii) The sequence (A, x (1)), is bounded and

there is a sequence (x;),.y of distinct points of X
such that for any n>2 the tuple (x,,,...,x,,) is a
permutation of the set {xi,...,x,}.

Proof. (i) = (ii). Let p = (p; ),y be a Faber
basis in Cy and let (33) hold for every n e N. The

partial sum operators are bounded for every Faber
basis. (See, for example, [12, Proposition 1.1.4]).
Hence, we have

sup IS, < .
n

The last inequality and (33) imply the bounded-
ness of the sequence (A, y (M), Now to prove (ii)

it suffices to show that for every n>2 and every
k; < nthere is k, <n+1 such that

Xion = Xky,n+l

holds. Suppose that, on the contrary, there is n >?2
and k; €{l,..,n} such that

xk, - * ku,n+l

for all integer numbers k, € {l,...,n+1}. We can find
a function f e Cy satisfying the equalities

f(xkl,n) = l

and
f(xl’”+1) - f(x2,”+1) T = f(xn+1,n+1) =0.

These equalities imply that
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Lnam(f) = L,(f,9M,) =0
and
Enm(f) = Ln—l(fs m,-) = 0.
Now, using the obvious equality
Sn7~ o =S5 5

P n+l,p n
and (33) we obtain the contradiction
0#8,;m(f)=58,;(f)
Sn’ﬁ(Sn+],i)(f)) = Sn,ﬁ(£n+l,§)ﬁ(f)) = Sn,ﬁ(o) = O

Statement (ii) follows.
(ii) = (i). Let (ii) hold. The boundedness of
the sequence (A, y(M)),y implies that

lim | £ = L,(f,9,9], =0 (34)

holds for every f e Cy. (See Proposition 2). Since
the Lagrange interpolation polynomial L,(f,90,-) is
invariant with respect to arbitrary permutation of the
nodes X ..., X we may suppose that

9 Yp+l,n+1o
Xinel = X155 X2 pyl = X250 Xy nrl = Xpp
for every n e N. Using the Newton polynomials 7,
(see (27)) we may write the polynomial L,(f,9,-) in
the form
L,(f,M,-) = flx)In + fIxp, x,]m,
+...+f[x1,x2,...,xn+l]ﬂ:n+1. (35)

Hence, we have the representation
f = Z f[xl,...,xk]ﬂ:k.
k=1

Now, (i) follows from Theorem 19. o
Corollary 21. Let X be an infinite compact sub-

set of R and let 9t < X be an interpolation matrix
with bounded (A, y (9M)),- Then the following con-

ditions are equivalent.
(i) There is a Faber basis of Cy such that (33)

holds for every n e N.
(ii) The equality

zn,mt o £nﬁ-l,i))? = £nﬁ-l,i))? o £n,DJI

holds for every n € N.
(iii) The inequality

deg Ln (fa m’ ) 2 deg Lnfl (f’ m’ )
holds for every ne N and every f € Cy.

Proof. The implications (i) = (ii) and (i) = (iii)
follow directly from Definition 10. The proofs of
(ii) = (i) and (iii) = (i) are similar to the proof
(i) = (ii) in Theorem 20. o

Remark 22. Statements (ii) and (iii) of Corol-
lary 21 can be considered as some special cases of
Lemma4.7 in [14] and Theorem 20.1 in [15] respec-
tively.

Lemma 23. Let X be an infinite compact sub-
set of R. The following statements are equivalent for

arbitrary Faber bases p = (p; )iy and § = (@)gen
in Cy.

(i) There is a sequence A = (A, ),y Of nonzero
numbers such that

Prc = My (36)
holds for every k  N.
(ii) The equality

Sus =g (37)

holds for every n e N.
Proof. The implication (i) = (ii) follows from
the definition of the Faber bases in Cy.

Let (ii) hold. Equality (36) is trivial if k£ =1. If
k=2, then there are A,...,A; € R such that

K
Pe = D2 M = M + Sy 15(pr)
i

Using (37) we obtain
Sk—l,q(Pk) = Sk—l,;’)(pk) =0.

Hence p, = 1,q, holds. Moreover, we have A, = 0
because

degp, =degg, =k-1. o0

The following theorem is a dual form of Theo-
rem 20 and it can be considered as the main result
of this section of the paper.

Theorem 24. Let X be an infinite compact sub-

set of R and let p=(p, )iy be a Faber basis in
Cy. The following conditions are equivalent.

(i) There exists an interpolation matrix 9t ¢ X
such that equality (33) holds for every n e N.

(ii) The basis p is interpolating.

Proof. (i) = (ii). Let M = {x, ,} be an inter-
polation matrix such that 9t < X and the equality

£n,9ﬁ = Sn,[)
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holds for every n € X. Using Theorem 20 we can sup-
pose that there is a sequence (x;),.y Of distinct

points of X such that

Xien = Xk

forall n>1 and k €{l,...,n}. To prove (ii) it suffices
to show that p is interpolating with nodes (x ), .y. AS

in the proof of implication (ii) = (i) from Theorem 20
we obtain that the basis 7 =(n;),.y consisting of

the corresponding Newton polynomials is an interpo-
lating Faber basis with the nodes (x;),.y for which

the equality

Sn,im = Sn,fc (39)

holds for every n e N. (See equality (35).) By Lem-
ma 23, it follows from (38) and (39) that there is a
sequence (A ),y Of nonzero real numbers such that

Dr = Mgy

holds for every k € N. Since 7 is an interpolating
Faber basis with nodes (x; );.y, Proposition 16 im-
plies that p is also interpolating with the same nodes.

(i) = (). Suppose that p =(p, ),y 1s inter-
polating with nodes (x;);.y- If

p=r,

where 7 =(n,),.y is the interpolating basis consis-
ting of the Newton polynomials, then using Theo-
rem 19 we can show that (33) holds for all neN
with

M =1{x; ,}, Xpn=X nelN, kell,..n}

List of literature

The case of an arbitrary interpolating Faber basis p
= (Py)gen can be reduced to the case p=7 with
the help of Lemma 23 and Proposition 16. o

Conclusions

Some new details of the well-known interplay
between the boundedness of Lebesgue constants and
the uniform convergence of Lagrange polynomials
are described. The corresponding relationships of
pointwise boundedness of Lebesgue functions with
pointwise convergence of these polynomials are descri-
bed as well. Some new relations between the bound-
edness of Lebesgue constants for special interpola-
ting matrices and the existence of interpolating Fa-
ber bases are obtained.
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B.B. binet, O.A. Joerowwui, FO. MpecTiH

OBMEXEHICTb KOHCTAHT NIEBEA V1 IHTEPNONALIAHI BASUCU ®ABEPA

Mpo6nemaTtuka. [JocnigxyeTbcs B3aEMO3B'A30K MiXk 0OMEXeEHICTIO KOHCTaHT Jlebera anst noniHomianbHoi iHTepnonsuii Jlarparxa

Ha komnakTi 3 R Ta icHyBaHHsM 6a3ncy ®abepa y npocTopi yHKUIN, HEMEPEePBHUX Ha LibOMY KOMMAKTi.

MeTa pocnigxeHHsi. MeTolo poboTu € onnc YMOB Ha MaTpuL0 By3riB iHTEpMonsuii, 3a SKux iHTepnonoBaHHs Byab-sKoi Hene-

pepBHOI hyHKUiT 36iraeTbcsa 3 po3knagaHHsMm uiei dyHKUiT y psg no 6asuncy dabepa.

MeToguka peanisauii. BukopucTtoByloTbcst MeToam 3aranbHoi Teopii 6asucis Waygepa ta pesynbtatu, ki onuMcytoTb 36KHICTb

iHTepnonsauinHux npouecis JlarpaHxa.

Pe3ynbTatn pocnipkeHHA. OnvMcaHo CTPYKTypy MaTpuvupb By3niB iHTepnonsuii, Lo NopoaxytoTb iHTeprnonsuiiHi 6asncu dabepa.
BucHoBku. KoxHun iHTepnonsuiiHni 6asuc ®abepa NopoaKyeTbCs iHTepnonsuiiHuM npouecom JlarpaHxa 3 MmaTpuueto cneuianb-

HOro smay 1a obmexeHumu koHcTaHTamu Jlebera.

Knio4osi cnoBa: koHcTaHTa Jlebera; dyHkuisa lNlebera; noniHomianbHa iHTepnonsuisa NarpaHxa; 6asuc ®abepa.



16 Haykosi sicti HTYY "KMI" 2017 /4

B.B. bunet, A.A. Josrowwi, tO. MNpectunH

OrPAHUYEHHOCTb KOHCTAHT JNNIEBEF'A N MUHTEPMNONALNOHHBIE BA3UCBHI PABEPA

Mpo6nemaTtuka. Viccnegyetcs B3aMMOCBSA3b MeXAy OrpaHMYEHHOCTbIO KOHCTaHT Jlebera Ans nonMHoOMmanbHOW MHTEPnonsumMm
Narpanxa Ha komnakTe u3 R u cyliectBoBaHnem 6asvca Pabepa B npocTpaHcTBe hyHKLUMIA, HENPEPbIBHBIX HA 3TOM KOMMNaKTe.

Llenb nccnepoBaHus. Lienbio paboTbl SBNsieTCA onncaHve YCroBUIn Ha MaTpuLy Y3rnoB MHTEePNonsumMn, Npyu KOTOPbIX UHTEPMO-
nuposaHue nobon HenpepbIBHOM OYHKLMKU COBNaAaeT C pasnoxeHneM 3Tol yHKUMK B psig no 6asvcy dabepa.

MeToguka peanusauum. Vicnonb3yotcs metoabl obuier Teopumn 6asncos Laynepa u pesynbtaThl, ONUCLIBAOLLME CXOOUMOCTb
MNHTEPMNONSALMOHHbBIX NpoLieccos JlarpaHxa.

Pe3ynbTathbl uccnegoBaHusA. OnvcaHa CTPyKTypa MaTpuL, y3roB MHTEPMNOnsALMM, NOpoXAaoLWmUX UHTEPNONsSUMOHHbIE Gasunchl
dabepa.

BbiBoabl. Kaxabli MHTEpNonsiunoHHbIN 6a3uc ®abepa nopoxgaeTcs MHTEPMonsLMOHHBIM npoleccoM JlarpaHka ¢ maTtpuuen
VHTEpMNonsauuM cneumansHOro Buaa v orpaHMYeHHbIMK KoHcTaHTamu Jlebera.

KnioueBble cnoBa: koHcTaHTa JleGera; yHkums Jlebera; nonnHoMmanbHas uHTepnonauus farpaxxa; 6asuc dabepa.

PexomenmoBana Panoto Hapniitna no penaxiii
¢akyIbTeTy NPUKIaTHOI MaTEMATUKK 30 ciunsg 2017 poky
KIII im. Iropst CikopcbKoro



