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IDENTIFICATION AND ASSESSMENT OF ELECTROCARDIOGRAPHIC
MARKERS OF CARDIAC ELECTRICAL INSTABILITY™

Background. Development of the methods for identification and assessment of early signs of heart disorders makes it
possible to catch the sight of disease at its initial stage. The article considers the methods of early diagnosis of the
cardiovascular system using electrocardiographic markers of cardiac electrical instability.

Objective. The aim of the study is to identify low-amplitude components, which are inaccessible to standard proce-
dures of electrocardiogram (ECG) evaluation by means of modern methods of registration, digital processing of elec-
trocardiosignals and high resolution electrocardiography.

Methods. For detection of diagnostic symptoms associated with cardiac electrical instability, changes in real and
simulated electrocardiosignals have been studied using different types of analysis: in time and frequency domains,
scattergrams, cluster analysis, wavelet analysis and principal component analysis.

Results. The developed combined methods for analysis of low-amplitude components of electrocardiosignals allowed
us to perform detection of late potentials, as well as T wave alternans, reflecting cardiac electrical instability.
Conclusions. Identification and evaluation of subtle manifestations of cardiac electrical activity are carried out. The
use of the proposed method made it possible to distinguish the bursts of late potentials from the noise and to deter-
mine the temporal area of their localization.

Keywords: high-resolution electrocardiography; late potentials; T wave alternans; markers of cardiac electrical insta-

bility; clustering analysis; principal component analysis; eigenvectors basis; wavelet analysis.

Introduction

Development of diagnostic ECG systems of new
generation is characterized by the use of complex
mathematical transformations for estimation of pa-
rameters of electrical potentials considering biophy-
sics and electrophysiology of myocardium. Among the
systems that allow investigation of subtle manifesta-
tions of cardiac electrical activity, the systems of high
resolution electrocardiography (HR ECG) should be
noted [1—3]. Early diagnosis of the state of the cardio-
vascular system developed on the basis of HR ECG
methods has essentially new opportunities and begins
to be widely applied in clinical practice.

An important task aimed at improvement of
risk stratification of patients is the search for addi-
tional predictors that can detect the fact of presence
of vulnerable myocardium and predict the possibility
of malignant arrhythmias. Apart from myocardial im-
aging techniques (magnetic resonance imaging, com-
puted tomography, tissue Doppler), such electrocar-
diographic parameters as alternation of T wave and
HR ECG with detection of atrial and ventricular late
potentials can serve as the prognostic markers for the
selection of patients for implantation of cardioverters-
defibrillators [1, 3].
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The first signs of electrical instability of myo-
cardium reflect changes in the electrophysiological
processes occurring at the cellular level, which does
not appear in the initial stage of the disease in the
form of substantial functional and anatomical chan-
ges [1]. Development of the non-invasive methods
for detection of the early signs of heart disease will
enable diagnosis of the disease at early stage of its
development. Digital processing of electrocardiogra-
phic signals makes it possible to extract information,
which cannot be obtained by the visual analysis of the
standard electrocardiogram [3, 4].

Problem statement

The aim of the study is improvement of me-
thods and tools for automated detection of low am-
plitude components of electrocardiosignals through
development of methodological and algorithmic sup-
port of high resolution ECG systems.

Biophysical bases of genesis of myocardial elec-
trical instability markers

Atrial and ventricular late potentials. Non-in-
vasive technology of high-resolution electrocardio-
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graphy performed by improving of technical facilities
and digital processing of electrocardiosignals allows
registration and identification of low amplitude sig-
nals, which are not visible on a conventional elec-
trocardiogram. The most extensively studied markers
of myocardial electric instability are atrial and ventri-
cular late potentials (ALP and VLP). Ventricular late
potentials are the low-amplitude (20—40 pV from the
body surface) high-frequency (40—250 Hz) electrical
signals, which are localized at the end of QRS com-
plex or beginning of ST segment and have a dura-
tion of a few tens of milliseconds (Fig. 1). Atrial late
potentials are the ow-amplitude high-frequency sig-
nals (5—20 uV), which are located at the end of P
wave or within the isoelectric part of cardiac interval
PQ. It is thought that ALP are the markers of atrial
tachyarrhythmias and VLP are the markers of ventri-
cular tachyarrhythmias that develop through the “re-

entry” mechanism. The emergence of late potentials
in ECG signal reflects the slow and fragmented de-
polarization associated with the “re-entry” circles [1].
The causes of propagation disturbances of excitation
pulse can be anatomical or functional.

Noninvasive registration from the body sur-
face, identification and analysis of late potentials are
the challenging tasks due to the fact that amplitude
of late potentials may be much smaller than the
amplitude of the noise components of ECG [1—4].
Noise and interferences occurring in the ECG sig-
nal have the different nature and include: power line
interference; polarization of the electrodes, resulting
in a shift of the zero signal level; artifacts of elec-
trodes displacement; motion artifacts; muscular acti-
vity; baseline drift caused by breathing; noise of elec-
tronic equipment. To eliminate noise and reveal low-
amplitude ECG components, computer signal ave-
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Fig. 1. Accumulation of cardiocycles with synchronization on R wave in three orthogonal Frank leads X, Y, Z (a); averaging of
cardiosignal (b); filtration in the frequency range of 40—250 Hz (c)



IHOOPMALLINHI TEXHOIOT 1T, CACTEMHWUA AHATII3 TA KEPYBAHHS 39

raging is performed. It is based on the property of
the repeatability of ECG signal and implements the
principle of pseudo synchronous accumulation. Ave-
raging of multiple cardiocycles (from 100 to 400 ECG
complexes) forms the basis of high-resolution elec-
trocardiogram. The method allows us to separate sig-
nal from noise by a significant improvement in sig-
nal/noise ratio. Since noise is a random process, it is
not synchronized with the investigated electrocardio-
signal. Noise superimposes randomly from one com-
plex to another, which leads to a significant reduc-
tion in its amplitude when averaging. In contrast to
the noise, diagnostically useful cardiosignal repeats
with a certain frequency (not chaotically), therefore
its amplitude stabilizes due to the averaging. As a re-
sult of averaging, the signal/noise ratio increases.
Implementation of temporal analysis accord-
ing to the Simson method involves averaging of
cardiosignal in three orthogonal Frank leads X, Y,
Z, followed by filtration in the frequency range of
40—250 Hz (Fig. 1). Analysis of their total vector

magnitude VX2 + Y2+ Z? determines the time and
amplitude quantitative parameters, based on which
conclusion about the presence or absence of late po-
tentials is made (Fig. 2).
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Fig. 2. Analysis of total vector magnitude vX 2,v2:7% for
detection of ventricular late potentials: / — vector mag-
nitude; 2 — QRS-on; 3 — QRS-off; 4 — 40 mkV; 5 —
QRS last 40 ms; 6 — below 40 mkV

T wave alternans. Another task of extraction of
diagnostically important information from the sur-
face electrocardiogram is analysis of the electrical
alternans of ventricular repolarization. Identification
and evaluation of T wave alternans is a promising
direction in electrocardiography. The term “T wave
alternans” (TWA) refers to the alternation of ampli-

tude or temporal characteristics of the ST interval
and T wave (ST-T complex) and involves measuring
of the differences in the amplitude, shape, and/or
time of the T wave in successive cardiac cycle [3, 6].

The appearance of TWA on the ECG can be
explained by the presence of repolarization alterna-
tion at the level of ventricular cardiomyocytes. TWA
reflects periodic beat-to-beat variation in the elec-
trophysiological characteristics of the myocardial cells
in various pathological processes that leads to viola-
tions of repolarization of cardiomyocytes, and serves
as a predictor of life-threatening ventricular tachyar-
rhythmias. Macro and micro alternans can be distin-
guished on ECG. Macro alternans is apparent on the
ECG with the naked eye and represents significant
change in the morphology of the T wave (its ampli-
tude, shape, length, polarity). Microvolt level beat-
to-beat fluctuations could not be revealed by visual
inspection and demand advanced digital processing
techniques and computational algorithms for their
detection and assessment.

It is thought that TWA is the result of spatial
or temporal dispersion of repolarization [5, 6]. He-
terogeneity of electrophysiological properties of the
myocardium cells (spatial changes in duration, shape
or speed of propagation of action potentials) forms
a substrate for reentry mechanism (mechanism of ex-
citation wave reentry), which consequently leads to
arrhythmia. TWA is closely associated with arrhyth-
mogenic mechanisms and reflects the propensity of
the myocardium to the development of ventricular
tachyarrhythmias, therefore, it is believed to be a mar-
ker of increased risk of sudden cardiac death.

ABAB pattern is typical for T wave alternans,
wherein one type of T wave is observed in the odd
cardiocycles (type A, the waves with a lower ampli-
tude in Fig. 3), and the different type of T wave can
be seen in the even cardiocycles (type B, the waves
with a larger amplitude in Fig. 3). However, the
other types of alternans are believed to be possible,
when at some point of time a change of phase of al-
ternans occurs, such as in ABBABA pattern.
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Fig. 3. Typical for T wave alternans ABAB pattern



40 Haykosi sicti HTYY "KMI"

2017 /1

T wave alternans is associated with the disper-
sion of repolarization and reflects variation that pe-
riodically appears in each succeeding cardiocycle.
Significant spatial and temporal dispersion of repo-
larization, variation of the propagation velocity of ex-
citation pulse, fluctuation of the ionic currents, and
alternation of duration and shape of the action po-
tentials in cardiac cells lead to arrhythmias. Repola-
rization alternans at the cellular level, observed in di-
rect recordings of action potentials from the surface
of the heart, are several orders of magnitude greater
than the manifestation of TWA on the surface ECG.
This fact explains why even micro-volt changes on
the surface ECG, as TWA manifestation, reflect sig-
nificant abnormalities of repolarization of cardiomyo-
cytes membrane and have clinical importance.

The peculiarity of the T wave alternans analysis
is the need of its assessment within a certain range
of heart rate. T wave alternans occurs at a signifi-
cant increase in heart rate above a certain threshold.
Usually, TWA appears with an increase in heart rate
up to 100—110 beats/minute, so it is mainly evalu-
ated during the exercise test, pharmacological stress
tests, electrocardiostimulation, or according to the
daily ECG monitoring. When heart rate is greater
than 110 beats/minute, alternans of repolarization
may occur in healthy people. A high heart rate can
result in overload and disruption of the cell's ability
to maintain calcium homeostasis during myocardial
contraction. This leads to an alternation in the cal-
cium circulation process and consequently to alter-
nating action potential duration [5, 6].

The relevance of using T wave alternans as a
noninvasive diagnostic indicator is not in doubt. How-
ever, the detection and assessment of the level of T
wave alternans from surface ECG data is quite chal-
lenging, as the visually implicit changes in T wave
amplitude have a level of from units to several tens
of microvolts, while the amplitude of the T wave is
0.3—0.7 mV. Furthermore, the real ECG signals are
usually highly distorted by noise components of bio-
logical and nonbiological origin.

The Database used in the current study of TWA
is provided by The PhysioNet resource (T Wave Al-
ternans Challenge Database) and contains 100 multi-
channel ECG records sampled at 500 Hz with 16 bit
resolution and approximate duration of two minu-
tes [7, 8]. It includes recordings from patients with
myocardial infarctions, transient ischemia, ventricu-
lar tachyarrhythmias, and other risk factors for sud-
den cardiac death, as well as healthy controls and
synthetic cases with TWA.

The stage of ECG signal preprocessing is very
important for TWA identification and assessment.
Even a very weak residual noise can lead to a false-

positive result. In the present study preprocessing
stage included the elimination of baseline drift and
high-frequency noise suppression. The wavelet based
multiresolution analysis was applied to remove base-
line fluctuations. Wavelet decomposition was perfor-
med up to the 12th level of the raw ECG data us-
ing Symmetric wavelet of 6th order. The 12th order
approximation function and the detail functions from
9 to 12 orders, which reflect slow changes of signal,
were not taken into account during signal recovery.
To remove high-frequency noises, the spectrum of the
previously detrended data was limited up to 30 Hz
using FIR Window Lowpass filter.
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Fig. 4. Synchronization of the ensemble of T waves according
to their maximums (a); dependence of the amplitude of
the T wave from the number of the cardiac cycles in case
of presence of repolarization alternans (b)

The next stage of the algorithm is detection of
R waves maximums on ECG. For this purpose the
ECG signal was twice differentiated and squared,
which made it possible to find extremes of QRS
complexes and determine the position of R waves
on ECG [9]. Then peaks of T waves were identified
on ECG. Investigation of T wave alternans with a
change in its amplitude and/or morphology involves
the alignment of ensemble of T waves on their ma-
ximums (Fig. 4, a). In case of absence of repolari-
zation alternans, amplitudes of the T waves in ECG
signal represent a realization of one random variable,
which varies with certain dispersion with respect to
the average value of the amplitude of T wave. In case
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of presence of repolarization alternans, amplitudes
of the T waves in ECG signal are the realizations of
two random variables that vary with given variances
with respect to their mathematical expectations on
the condition of alternation of these characteristics
in consecutive cardiac cycles. Here the dependence
of the amplitude of the T wave from the number of
the cardiac cycle has a sawtooth character (Fig. 4, b).
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Fig. 5. The cluster analysis of scattergram: a — absence of re-
polarization alternans; b — presence of repolarization al-
ternans: @ — odd; @ — even; — — bisector; 0 — center of
the first cluster; © — center of the second cluster; = = —
distance between the centers of the clusters

The scatter-plot method of TWA analysis in-
volves graphical representation of the T wave ampli-
tude (or another feature, for instance, the area under
the curve of T wave) of each beat against its succes-
sor in coordinate plane. Area of the points obtained
in this way is called scattergram (scatter-plot, Poin-

care or Lorenz plot). Cluster analysis of scattergram
can be used as for ABABAB pattern of alternans as
for ABCABC pattern. Scattergram represents a set
of points, the center of which is located on the bi-
sector. The deviation of the point from the bisector
to the left indicates how much more is the T wave
amplitude of N+1 beat comparing to the T wave am-
plitude for the previous beat (N); deviation of the
point from the bisector to the right demonstrates
how much less is the T wave amplitude of N+1 beat
comparing to the T wave amplitude of the previous
beat (N).

Comparing scattergrams obtained for the cases
of TWA presence and TWA absence, we can observe
one cluster of points in the case of TWA absence
(Fig. 5, a) and the apparent separation of the set of
points into two clusters corresponding to the ampli-
tudes of T waves from even and odd ECG cardio-
cycles in the case of TWA presence of ABAB pat-
tern (Fig. 5, b). Three clusters are observed in scat-
tergram in case of alternans of ABCABC type.

The amplitude of T wave alternans is estimated
by measuring the distance between the centers of
the two clusters, which were obtained in scattergram
for even and odd cardiocycles. The cluster analysis of
scattergram involves assessment of intercluster dis-
tance S,, which is calculated between the centers of
two clusters (Fig. 5, b), and the average sum of squ-
ares of intracluster distances S, which were found
for each of the clusters. The squared Euclidean dis-
tance measure was used.

The combined approach for processing of low-
amplitude components of electrocardiosignals

Existing methods of analysis of low-amplitude
components of electrocardiosignals can be divided
into two classes, depending on the availability of a
priori information about the investigated signals. The
knowledge of time and/or frequency characteristics
of the signals and the use of standard basic func-
tions is typical for the I-st class of methods. For the
II-nd class of methods, on the basis of a minimum
of a priori information about signal properties, the
eigen basic functions derived from the data are ap-
plied. For the analysis of low-amplitude components
of electrocardiosignals a combined approach, which
includes several stages with the use of methods of
analysis of the I-st and the II-nd classes, is encou-
raged to use: wavelet transformation, decomposition
in the basis of eigenvectors, principal component ana-
lysis [10—13]. For tasks of processing of low-ampli-
tude components of ECG the different combina-
tions of these methods can be utilized [3, 4, 9—13].
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Each i-realization in the ensemble of registered
electrocardiosignals corresponds to a set of samples
E; =le;,e;,...e;y], where N is the amount of sam-

ples. The ensemble of M realizations can be presen-
ted as matrix E. Then the matrix of the ensemble
of observations F and the covariance matrix C ob-
tained for the ensemble of observations can be writ-
ten as follows:

€ e e N STR4Y) CN

e e e 1 c 1
E-| 2 W oo 2 2N

em1 em2 -+ emn CNn1 CnN2 -+ CNN

where the elements c; of the matrix C can be pre-
sented as follows

M
¢ = z (ex; —my, )(ekj —-my),
k=1

m, is the average value calculated for the k-th reali-
zation.

With the methods of decomposition in the ba-
sis of eigenvectors and principal component analy-
sis, the subspaces of eigen basic functions, which are
determined from observations of the ensemble of
electrocardiosignals, are constructed.

The method of decomposition in the basis of
eigenvectors and principal component analysis decor-
relate the ensemble of registered electrocardiosignals
by projecting the data on the orthogonal axes of the
eigenvectors of the covariance matrix:

E=UDVT,

where F is observations matrix (the ensemble of re-
gistered electrocardiosignals) with dimension M x N;
D is the diagonal matrix with diagonal elements equal
to the square root of the eigenvalues A; of the cova-
riance matrix C; V'is N x N matrix of eigenvectors
of the covariance matrix C; Uis M x M matrix of E
projections on the eigenvectors of matrix C.

Performing principal component analysis, the
major eigenvectors corresponding to the most signi-
ficant eigenvalues are retained (p << M). According
to the set of the major eigenvectors, a new matrix of
ECG observations is constructed with filtration from
noise components:

Epey =UDVT,
where D, is the diagonal matrix with diagonal ele-

ments equal to the square root of the most signifi-
cant eigenvalues 4; of the covariance matrix C.

On the basis of wavelet decomposition, elec-
trocardiosignals preprocessing and postprocessing can
be performed, resulting in the formation of the sub-
space of wavelet coefficients of low amplitude com-
ponents Y.

By means of multiresolution wavelet transform,
ECG signal can be represented as a sum of an ap-
proximation component A,, and the detail compo-
nents D;:

E(t) = Ayt + > D, (1),
Jj=1

where m is the number of wavelet decomposition
levels.

The approximation coefficients of multiresolu-
tion wavelet transform correspond to the low-frequ-
ency components of ECG signal and the detail co-
efficients correspond to high frequency compo-
nents.

Depending on the features of detectable patho-
logy, signs of low amplitude components of electro-
cardiosignals can be found either at lower levels of
detail components (for high-frequency character of
identified components), or at the highest levels of
detail components (for low-frequency character of
identified components).

Numerical experiments

Identification of late potentials and T wave
alternans in the recorded ECG signals is a difficult
task because of noise components comparable in am-
plitude with the low amplitude components of elec-
trocardiosignals, as well as imposition of time and fre-
quency ranges of the signals of normal and abnormal
heart electrical activity. A promising direction for sol-
ving this problem is the use of a combined approach.

Combined method for the analysis of the subtle
structure of electrocardiosignal for identification of
late potentials. Extraction and evaluation of late po-
tentials is possible to perform through the creation of
eigensubspaces of wavelet patterns of low-amplitude
components of ECG. Suggested procedure for atrial
late potentials recognition is based on the determi-
nation of eigenvalues and eigenvectors of the cova-
riance matrix defined for wavelet coefficients sets,
which comprise signs of late potentials and specified
for each P wave in the ensemble of ECG realizations.

Eigenvector V, of covariance matrix C,, de-
fined for wavelet coefficients sets with signs of late
potentials, corresponds to the largest eigenvalue A,.
The first principal component determined by eigen-
vector V, can be considered as a filtered set of the
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detail wavelet coefficients c¢D,. The signal recon-
structed on this set of wavelet coefficients can be
considered as a component of ECG that in the case
of atrial delayed depolarization contains the signs of
late potentials purified from noise and high-ampli-
tude P wave part. The remaining vectors of eigenbasis
characterize the noise subspace, concretely, a mix-
ture of the less significant components of the useful
signal with physiological interferences and uncorre-
lated measuring noise.

In order to detect signs of atrial late potentials
on the background of noise by means of the propo-
sed method, a model experiment was conducted. The
real ECG recordings preliminary filtered from the
high-frequency components were considered as the
norm without ALP. Then, additive white gaussian
noise was added to these signals. At the initial assum-
ption about the possibility of the “norm” and “pa-
thology”, cardiocycles with such P waves are normal,
because they do not contain ALP. Further in the
terminal part of each distorted by noise P wave the
simulated late potentials were added. Analysis of
cardiocycles with such P waves involves the detec-
tion of late potentials on the background noise. For
the initial ensembles of cardiosignals the sets of wave-
let coefficients cD, were obtained by means of wave-
let decomposition up to the 5th level with a “sym-
metric” wavelet of the 4th order.

Parameter

}‘i
N

2k

k=1

L:

100 %

makes sense of the part of the variance in percent-
age, which is used to estimate the proportion of
the information contained in the component de-
termined by the eigenvector V,.

The obtained sets of eigenvalues explain the
use of the component determined by the first ei-
genvector V,. For example, decomposition in a ba-
sis of eigenvectors performed for wavelet coeffi-
cients ¢D, of the ECG signals with ALP presence
in background noise obviously shows that the larg-
est proportion of the dispersion corresponds to the
first principal component (Fig. 6, b). The propor-
tion of the variance is approximately equal for re-
maining eigenvalues and determined by the noise
components. In absence of ALP wavelet coefficients
contain only noise and, consequently, the propor-
tion of the variance for the first component is not
significantly higher than the corresponding parame-
ter for the other components in the set of 10 eigen-
values (Fig. 6, a). Reconstruction in the time-am-

plitude domain was made by inverse wavelet trans-
form performed using only the main first compo-
nent of wavelet coefficients ¢D, (Fig. 7). The use
of the proposed complex method made it possible
to distinguish ALP bursts from the noise and de-
termine the temporal area of their localization. For
P waves corresponding to the absence of ALP re-
constructed output signal does not contain high-
amplitude ALP bursts above the general noise level.
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Numerical characteristics of wavelet coefficients,
allowed us to obtain non-overlapping clusters for 2
classes in ALP pattern recognition: “norm — ALP
absence” and “pathology — ALP presence” (Fig. 8).
Parameter Z was determined as ratio of the first ei-
genvalue to the sum of all eigenvalues of the cova-
riance matrix for an ensemble of detail wavelet co-
efficients ¢D,. M parameter was determined as ma-
ximum of the absolute values of the signal 4, recon-
structed by the main component of the detail coef-
ficients ¢D;: M = max |A]|.
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Identification and evaluation of T wave alter-
nans using principal component analysis. The method
of principal components analysis implies decorrela-
tion of the ensemble of T waves through the data
projection on the orthogonal axes of eigenvectors of
the covariance matrix [10]. Error of T wave recon-
struction in coordinate basis of principal eigenvec-
tors depends on the number of eigenvectors, which
are discarded during reconstruction. It is enough to
take into account from 3 to 5 major eigenvectors and
their eigenvalues for the analysis of T wave alternans.

The decomposition of the ensemble of T waves
consists of calculating b; coefficients, which are the
projections of the signal on the eigenvectors (Fig. 9).
Analysis of b; coefficients allows assessment of beat-
to-beat changes in the amplitude and shape of T
wave. Depending on the complexity of violations of
repolarization in myocardial cells, beat-to-beat chan-
ges in the morphology of T wave may comprise as
subtle variations of shape, as apparent modifications,
including even change of T wave polarity. ABAB pat-
tern of alternans corresponds to one form of T wave
in even of cardiac cycles and to another form in odd
cardiac cycles. In case of alternans that manifests it-
self as beat-to-beat changes in T wave morphology,
the values of the coefficients b; form distinct clus-
ters corresponding to even and odd cardiac cycles.

For ECG signals with the absence of T wave
alternans the presence of one cluster of points for-
med by the values of the coefficients b,—b; of eigen-
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Fig. 9. The first 3 eigenvectors V,—V; (a) and their coefficients b,—b; (b)
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vectors V,—V; is observed (Fig. 10, a). For ECG sig-
nals with T wave alternans the presence of two clus-
ters in the space of features can be seen (Fig. 10, b).
These clusters of points correspond to odd and even
cardiac cycles. That means that there are two main
(base) shapes, around which the shape of T waves
fluctuates in odd and even cardiac cycles. These ba-
sic shapes of T wave for even and odd cardiocycles
are calculated using the coefficient values of the res-
pective centers of the clusters (Fig. 11) by obtaining
a linear combination of the vectors V,—V; multiplied
by the coefficients b,—b;.

Fig. 10. Coefficients b;—b; for odd and even cardiocycles: a —
absence of T wave alternans: l — odd, & — even, B —
center of the first cluster, @ — center of the second clus-
ter, = = — distance between the centres of the clusters; b —
presence of T wave alternans: O — even beats, £ — odd
beats

As a quantitative characteristic for ALP pres-
ence identification, the sum of the squares of b;
coefficients, which correspond to the centers of the
clusters for even and odd cardiocycles, is proposed

to use. Suppose that C_y4q(byqd15 Lodd2s-+> bodas) and

Coven Bevents> Beven2s > bevens) are the centers of the

clusters for even and odd cardiocycles, then
J 2 d 2
Hodd = Z(bodd)i 5 Heven = Z(beven )i

i=1 i=1

where S is the selected number coefficients b,
which correspond to the principal eigenvectors V..
Significant differences between the values of the
parameters obtained by decomposition in the basis
of eigenvectors for T waves from even and odd
cardiocycles indicate the presence of TWA.

0.2

0.15

0.1}
>
=

>
0.05

0 0.05 0.1

Fig. 11. The basic shapes of T wave in even and odd cardiac
cycles in the presence of micro-TWA: =—— — basic
shape for odd beats; =-=- — basic shape for even beats

Analyzing the features of T wave alternans iden-
tification by analysis in time domain, cluster analysis
of the Lorentz scattergrams and principal compo-
nent analysis, it should be noted that, since the phe-
nomenon of TWA may relate to changes in the am-
plitude, shape, and time, it is reasonable to use se-
veral different approaches for a comprehensive study
of this process. For example, the analysis of TWA
in the time domain or by using Lorentz scattergrams
reveals the alternans of T wave amplitude, but does
not provide information about changing of its mor-
phology. Investigations have shown that the PCA
method in addition to the identification of alter-
nans in the amplitude of T wave, can also reveal beat-
to-beat variability of its shape.

Conclusions
The combined methods for the analysis of low-

amplitude components of electrocardiogram based on
the creation of eigensubspaces of signals and noise
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by decomposition in the basis of eigenvectors, prin-
cipal component analysis, and wavelet analysis are de-
veloped. The proposed techniques allow the selection
from the noisy ECGs of low amplitude components
that are markers of cardiac electrical instability.
Identification of markers of cardiac electrical
instability may be based on the use of a broad class
of algorithms — from the conventional analysis in
time and frequency domains to the complex proce-
dures of pattern recognition. However, at this stage
wide application of many approaches to the analysis
of markers of cardiac electrical instability is limited
in clinical practice, due to the ambiguity of medical

interpretation, and demands additional clinical stu-
dies. Thus, the directions for further research are im-
provement of theory-based methods and algorithms
for detection of low-amplitude components of ECG
for early prediction of potentially dangerous arrhyth-
mias and arrangement of wide clinical tests.
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K.O. IeaHbko, H.I'. IBaHyLukiHa, €.C. Kapnntok

BUABMNEHHA TA OLIHIOBAHHA ENEKTPOKAPLIOMPAGIYHNX MAPKEPIB ENIEKTPUYHOI HECTABIIbHOCTI CEPLIA

Mpo6nemaTtuka. Po3pobka meToadiB ideHTUdIKaLii Ta OLiHIOBaHHSA paHHIX O3HaK 3axBOpPIOBaHb CepLst AaE 3MOTY BUSIBUTU MOpY-

LeHHs1 B poboTi cepus Ha noyaTkoBil cTagii. Y cTtaTTi po3rnsgaloTbCs METOAM paHHbOI AiarHOCTUKM CepLeBO-CYAUHHOI CUCTEMU 3 BU-
KOPWCTaHHAM enekTpokapaiorpadivyHnx MapKkepiB enNeKTpUYHOi HecTabinbHOCTI Miokapaa.

MeTa pocnimkeHHs. BusaBneHHs HWU3bKoaMnniTyAHWX KOMMOHEHT enekTpokapAiocurHanis, ki HEMOXIMBO NpoaHarnisyBatu 3a

[OMoOMOrol0  CTaHOapTHUX Npoueayp OuiHoBaHHS enekTpokapgiorpamu (EKI), i3 BMKOpUCTaHHAM cyyYacHuWx MeTodiB peecTpadii,
umndpoBoi 06pobkn enekTpokapaiocMrHanis i enekTpokapAaiorpadii BUCOKOro po3aineHHs.

MeToauka peani3sadii. [ns BUSIBNEHHS OiarHOCTUYHMX O3HaK, NOB’sI3aHUX 3 eNeKTPUYHOK HecTabinbHICTIO Miokapaa, 3MiHM B pe-

anbHKX i 3MoaenboBaHMX enekTpokapgiocurHanax 6ynu BUBYEHi 3 BUKOPUCTaHHSM Pi3HUX BUAIB aHani3y: B YacoBili i YacToTHin obnac-
TAX, CKaTeporpam, KrnacTepHoOro aHaniay, BevBneT-aHanidy Ta aHari3y ronoBHMX KOMMOHEHT.

Pe3ynbTatn pgocnipkeHb. Po3pobrneHi kombiHOBaHi MeToauM aHanidy HM3bKoammnniTyAHUX KOMMOHEHT enekTpokapgiocurHanis

Oanu 3mMory BUKOHaTW BUSIBNEHHS Ni3HiX NOTeHLianis, a Takox anbTepHauii T-3ybus Ha EKT, siki € mapkepamu enekTpuyHoi HecTabinb-
HOCTi Miokapaa.
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BucHoBku. [1poBeeHO BUSBMNEHHSA Ta OLIHIOBAHHSI TOHKMX MPOSIBIB €NeKTPUYHOI akTUBHOCTI cepus. BukopucTaHHs 3anponoHo-
BaHOro MeToAy Aarno 3Mory BUAIMUTU CMNECKU Ni3HiX NoTeHUianiB Ha GoHi LyMy | BU3HAYUTU YacoBy obnacTb ix nokanisauji.

KniovoBi cnoBa: enektpokapgiorpadisi BUCOKOro po3AineHHs; Mi3Hi NoTeHuianu; enekTpuyHa anbTepauia T-3ybus; mapkepu
enekTpu4Hoi HecTabinbHOCTI Miokapaa; knacTepHUil aHani3; aHania ronoBHUX KOMMOHEHT; BNacHi BekTopu 6asucy; BensneT-aHanis.

E.O. UBaHbko, H.I". MBaHywkuHa, E.C. Kapnntok

BbLIABIEHVE W OLIEHUBAHVE 3NEKTPOKAPOMOIPA®UYECKMX MAPKEPOB SMEKTPUYECKOWM HECTABMIIBHOCTU
CEPOLA

Mpo6nematuka. PazpaboTka MeTOA0B MAEHTUMMKALMM N OLEHUBAHNSA PaHHWX NPU3HaKoB 3aboneBaHun cepaua No3BonseT Bbl-
SIBUTb HapylleHusi B paboTe cepaua Ha HavanbHOW cTaguu. B ctatbe paccmatpuBaloTCsi METOObl PaHHEW OUArHOCTUKU CepaeyqHo-
COCyAWCTOM CUCTEMbI C UCMONb30BAHMEM 3MEKTPOKapANOrpacpuyecknx MapkepoB 3MeKTpUYECKo HeCTabUNbHOCTU MUOKapaa.

Llenb uccnepoBaHus. BohisiBneHne HU3k0aMMMTYAHbIX KOMMNOHEHTOB 3EKTPOKAapPANOCUTHANOB, KOTOPbIE HEBO3MOXHO NpoaHa-
nM3npoBaThb NPV NOMOLLM CTaHAAPTHbLIX NPoLeayp OLeHuBaHuA anekTpokapauorpammbl (AKIM), ¢ ucnonb3oBaHWeM COBPEMEHHBIX Me-
TOOOB perncTpauun, umdpoBoit 06paboTkn ANEKTPOKAPANOCUTHAIOB U 3MeKTpoKapAnorpadmm BbICOKOrO paspeLleHus.

MeToauka peanusauuu. [Ins BbISIBNEHUS AMArHOCTUYECKUX NMPU3HAKOB, CBSI3AHHbLIX C 3MEKTPUYECKOW HECTABUNBHOCTHI0 MUO-
Kapaa, U3MeHeHUs1 B pearibHbIX U CMOLENMPOBAHHbIX 3NEKTPOKapAMoCcUrHanax obinm U3yveHbl C UCMOMb30BaHNEM pPasnMYHbIX BUOOB
aHanu3a: Bo BpEMEeHHOW 1 YacTOTHOM obracTsax, ckaTeporpaMM, KnacTepHOro aHanuaa, BeBreT-aHanvMaa u aHanmsa rinaBHbIX KOMMOHEHT.

Pe3ynbTaTbl uccnegoBaHun. Pa3paboTaHHble KOMOMHMPOBAHHbIE METOAbI aHanM3a HU3KOaMMNAUTYAHbIX KOMMOHEHT 3NeKTpo-
KapaMOCUrHanoB MO3BOMNUMM BbINOMHUTL OOHApYXXeHUe NO34HWX MOTEHUMANOoB, a Takke anbTepHaumio T-3ybua K, KoTopble sABRsOTCS
MapkepaMu aneKTpu4eckon HectabunbHOCTU MUoKapaa.

BbiBogbl. [TpoBegeHO BbiSIBIEHWE W OLEHUBAHWE TOHKUX MPOSIBMEHUIA 3NEKTPUYECKOW akTUBHOCTM cepdua. Vcnonb3oBaHue
NPeANoXEHHOro MeToaa NO3BONWIO BbIAENWUTL BCMMECKN NO3AHUX NOTEHLMANoB Ha hoHe Lyma 1 onpeaenuTe BpeMEHHY0 obnacTb ux
riokanusaumm.

KnioueBble cnoBa: anekTpokapavorpadmst BbICOKOrO paspeLleHunst; No34HNe NoTeHuManbl; anekTpuyeckast anstepHaumsa T-3y6ua;
MapKepbl ANeKTPUYECKON HeCTabUNbHOCTM MWOKaPAa; KracTepHbIA aHanu3; aHanu3a rnaBHbIX KOMMIOHEHT; cOBCTBEHHbIE BEKTOPbI Gasuca;
BEVBMeT-aHanus.
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