METHODOLOGY OF MODELING AND FORECASTING NONLINEAR PROCESSES IN FINANCES

Background. Most of the models of financial and economic processes are characterized by considerable computational complexity, and construction of predictions of acceptable quality for the required time horizon — by considerable efforts. Therefore, the development and implementation of effective tools for forecasting the modeling of financial and economic processes are one of the actual and practically meaningful tasks. The paper deals with the modeling and forecasting of nonlinear nonstationary processes in macroeconomics and finance using a methodology based on the principles of system analysis such as hierarchical modeling, consideration of the influence of uncertainties, optimization of the characteristics of models using complex criteria, structural and parametric adaptation. The application of the proposed methodology will improve the quality of forecasting by studying the features of the analyzed process and adapting models to new data, etc.

Objective. The purpose of this article is to develop a methodology for predictive modeling of nonstationary processes in finance and macroeconomics using statistical data, as well as its implementation in the corresponding computer system.

Methods. The methodology is based on the technologies of preliminary processing of statistical data intended to eliminate possible uncertainties, the use of correlation analysis to evaluate structure of the model and choice of methods for estimating its parameters, calculating forecast estimates and generating alternative solutions. This allows us to objectively evaluate the results obtained at each stage of solving the problem of modeling nonlinear nonstationary processes in macroeconomics and finance. The paper proposes an original methodology for determining the structure of the model and its implementation in the information system for decision support.

Results. Appropriate models were built for the selected financial and macroeconomic processes. High quality of the final result of data analysis and forecasting is achieved due to implementation of evaluation of the results obtained using statistical quality criteria at each stage of data processing, modeling and forecasting, and also due to the possibility of adapting models to new data through analysis of statistical characteristics of the processes under study and application of combined criteria for the adequacy of models and quality of estimates of forecasts, and the convenient presentation of intermediate and final results.

Conclusions. The proposed methodology is used for forecasting modeling of some macroeconomic and financial processes in Ukraine. The obtained results show that it can be successfully used to solve practical problems of constructing models and prediction of nonlinear nonstationary processes under conditions of uncertainties of various types, which, as a rule, have to be considered during modeling and forecasting on the basis of statistical data.

Keywords: nonlinear nonstationary process; uncertainties; mathematical modeling; forecasting; macroeconomic and financial processes.
construct appropriate computational algorithms for solving multiple related specific problems. Development and application of the methodologies possessing the necessary features mentioned is an important task that is being solved nowadays by many researchers [4, 5].

Today there exist methodologies developed for studying nonlinear nonstationary processes (NNP) and constructing mathematical models in various research fields using statistical procedures and state space representation. Another approach to development models for NNP is based upon intellectual data analysis (IDA) techniques such as artificial neural networks, the group method for data handling (GMDH) [5], and Bayesian networks (both static and dynamic) [6, 7]. On the other side these methodologies need some refinement so that to produce better results regarding models adequacy and quality of the forecasts based upon them. The refinement may touch preliminary data processing algorithms, aiming to improvement of statistical characteristics of data, model structure and parameter estimation procedures, as well as the forecast estimates. A very important point regarding modeling methodology development is hiring of appropriate sets of statistical quality criteria necessary to monitor all stages of computations: data quality analysis, model adequacy estimation, and determining the forecasts quality. Finally the quality criteria should analyze alternative decisions (alternatives) based on the forecasts generated. For example, in a case of computing the alternatives using optimization procedures popular quadratic criterion is used very often taking into consideration input control energy (or other equivalent of input control variables) and deviations of the controlled system states from prescribed trajectories [8, 9]. Many other quality criteria are available or could be constructed additionally for supporting specific applications if necessary. The basic requirements to them are easy interpretation and practicability, providing to a user all necessary functions necessary for computer-human interaction, and solving specific problems.

This study is directed towards improvement of model constructing methodology, more specifically it is touching upon data preparing techniques for model constructing, as well as model structure and parameter estimation using multiple computational procedures.

Problem Statement

The purpose of the study is as follows: (1) to perform analysis and development of requirements to the preliminary data processing algorithms (preparing of data for model constructing); (2) development of the software system architecture for model constructing, process evolution forecasting for various dynamic processes in economy and finances including nonlinear and nonstationary ones; (3) identification of some uncertainties relevant to model structure and parameters estimating, and selection of mathematical techniques for minimizing influence of the uncertainties identified; (4) application illustration of the software developed to solving selected problems of modeling and forecasting using actual statistical data.

Requirements to the Modern Applied Software Systems

Modern applied software systems for modeling and forecasting (ASSMF) are rather complex multifunctional (very often possibly distributed) highly developed computing systems with hierarchical architecture that corresponds to the nature of decision making by a human being. To make functionality of the ASSMF maximum useful and convenient for users of different levels (like engineering personnel and managerial staff) they should satisfy some general requirements. In short, the requirements to ASSMF are as follows:

- hierarchical system architecture corresponding to the natural procedures of data and knowledge analysis and decision making by a human;
- availability of model adaptation features making possible models (structure and parameters) adaptation to new data, and possible changes in the modes of functioning of the system under study;
- application of optimization techniques (where possible and necessary) aiming to obtain optimal state and parameter estimates, and optimized forecast estimates as well;
- identification of possible uncertainties and availability of computational techniques directed towards elimination or minimization of negative influence of the uncertainties detected;
- availability of several sets of statistical quality criteria for estimating quality of data, models, forecasts, and decision alternatives, accordingly;
- functional completeness of the system providing to a user all necessary functions necessary for computer-human interaction, and solving specific problem statement and computing results representation in a convenient form;
- adaptation of the system to the needs and preferences of a user, for example, to the ways of representation of intermediate and final results of computations;
— providing high speed of the system functioning including implementation of parallel computing algorithms where possible and necessary.

Appropriate satisfaction of all the requirements to development of ASSMF provides good possibilities for effective practical usage of the system developed and for enhancing its general behavioral effect for specific applications in the area of model constructing with statistical data and forecasting of the relevant processes evolution for a given time horizon [5, 7, 9].

Coping with Possible Uncertainties

Practically all types of mathematical modeling (using functional and structural approaches) usually need to cope with various kinds of uncertainties associated with data, structure of the process under study and subsequently its model, parameters uncertainties, and the forecasts quality.

Here we consider uncertainties as the factors and events that influence negatively the whole process of data collecting, processing and mathematical model building, forecasting of processes evolution, and generating of alternative managerial decisions. They are practically always inherent to the most actual processes under study due to incompleteness or inexactness of our knowledge regarding the objects (systems) under study, incorrect selection or application of computational procedures etc. The uncertainties appear very often due to incompleteness of available data (due to missing observations or short samples), noisy measurements or they are invoked by stochastic external disturbances with unknown probability distribution, poor estimates of model structure or by a wrong selection of a model parameters estimation procedure.

In many cases, a researcher has to cope with the following generalized types of possible uncertainties: structural, statistical, parametric, probabilistic and amplitude uncertainties. The structural uncertainties are encountered in the cases when the structure of the process under study (as well as its model) is only partially known or not clearly defined. For example, in a case when the functional approach to model constructing is applied usually we do not know exactly structure of the system under study. It is determined with appropriate model structure estimation techniques such as correlation analysis, estimation of mutual information, time lags estimation, testing for nonlinearity and nonstationarity using appropriate statistical tests, identification of external disturbances types etc. The sequence of actions necessary for identification, processing and taking into consideration of possible uncertainties is given below.

Identification of data uncertainties: missing and extreme values, measurement errors, influence of external random disturbances, and short samples.

Reduction of influence of the data uncertainties using available or newly developed techniques (missing values imputation, normalizing the data, digital and optimal filtering of noisy data, outliers processing, etc.).

Estimation of model structure and parameters using available (collected) information, correlation analysis methods, statistical tests, and appropriate parameter estimation methods.

Reduction of uncertainties of model structure and its parameters hiring repeated estimation in a loop until the model adequacy is acceptable. Several alternative techniques are available for nonlinear models parameter estimation.

Computing forecasts and reduction of forecasts uncertainty thanks to the use of several alternative methods and combination schemes.

The use of the forecasts for generating alternative decisions according to the problem statement.

All the tasks and procedures mentioned are solved successfully with appropriately designed and implemented ASSMF. As far as usually we have to process stochastic data, application of available statistical techniques provides a possibility for approximate estimation of a system (and its model) structure. First of all, we apply correlation analysis techniques to separate and multiple time series and appropriate statistical tests. To find “the best” model structure it is recommended to apply adaptive estimation schemes that provide automatic search in a definite selected range of model structure parameters (type of distribution, model order, time lags, nonlinearities and nonstationarities). Very often the search is performed, for example, in the class of regression type models with the use of integrated criterion of the following type:

\[
V_N(\theta, D_N) = |1 - R^2| + |1 - 0.5DW| + \alpha \frac{SSE(\theta)}{\max SSE} + U, \quad (1)
\]

where θ is a vector of model parameters; D_N is statistical data in the form of time series (N is a power of time series used); R^2 is a determination coefficient; DW is Durbin–Watson statistic; α is adjustment coefficient that could be selected by a user or searched for automatically using optimization techniques; U is Theil coefficient characterizing quality of forecasts; $SSE(\theta)$ is actual SSE for a model being constructed; $\max SSE(\theta)$ is maximum possible value of SSE for
Testing for Linearity and Some Models for Nonlinear Nonstationary Processes

The problem of testing the processes for linearity (nonlinearity) is considered in many studies [10—16]. Usually combination of several tests helps to detect existing nonlinearity and to select appropriate model structure. To detect nonlinearity the following test was applied:

- construct linear regression model for dependent variable \(y(k) \) and right hand side (RHS) vector \(w(k) \) using LS [11]:

\[
y(k) = \beta^T w(k) + u(k)
\]

where \(w(k) = [1, y(k-1), ..., y(k-p); x_1(k), ..., x_l(k)]^T \) is a vector of measurements for dependent variable and regressors; \(v(k) = [u(k-1), ..., u(k-q)]^T \) is a vector of random variables; and \(u(k) = g(\beta, \theta, w(k), v(k)) \varepsilon(k) \).

\(\varepsilon(k) \) is martingale process with the following statistical characteristics: \(E[\varepsilon(k)|I(k)] = 0, \text{cov}[\varepsilon(k)|I(k)] = \sigma^2 \varepsilon; I(k) = \{ y(k-j), j > 0; x(k-i), i \geq 0 \} \) is available observation information;

- construct regression model for \(u(k) \) with regressors \(w(k) \), and compute sum of squared errors for the model \(SSR_0 \);

- compute the test statistics:

\[
F(m, N - n - m) = \frac{SSR_0 - SSR_r}{SSR_r / (N - n - m)}
\]

where \(n = l + p + 1 \); \(m \) is dimension of parameter vector \(\theta \); the value computed has \(F \)-distribution with \(\theta = 0 \). The use of \(F \)-statistics instead of \(\chi^2 \) test is recommended for short samples.

When constructing mathematical models for time series it is convenient to use proposed unified notion of model structure which we define as follows:

\[
S = \{ r, p, m, n, d, w, l \}
\]

where \(r \) is model dimension (number of equations that constitute a model); \(p \) is model order (maximum order of differential or difference equation); \(m \) is a number of independent variables in the right hand side of model equation; \(n \) is a nonlinearity and its type (nonlinearity in variables or in parameters); \(d \) is output reaction delay time (or lag); \(w \) is stochastic external disturbance and its probability distribution; \(l \) represents possible restrictions for variables and/or model parameters. All the elements of a model structure are estimated with appropriate statistical tests and correlation analysis procedures, such as correlation matrix, autocorrelation function (ACF), partial ACF (PACF), bi-correlations, and higher order correlation functions.

Consider some types of models nonlinear in variables that are widely used today. Some nonlinear models result from studying econometric time series. For example, nonlinear regression of the following type was used to describe gross domestic product (GDP) and tax income:

\[
\begin{align*}
y_1(k) &= a_0 + a_1 y_1(k-1) + b_1 \exp(y_2(k)) + a_2 x_1(k) x_2(k) + e_1(k), \\
y_2(k) &= c_0 + c_1 y_2(k-1) + b_2 \exp(y_1(k)) + c_2 x_1(k) x_2(k) + e_2(k)
\end{align*}
\]

where \(y_1(k) \) is logarithm of GDP; \(y_2(k) \) is logarithm of tax income; \(x_1(k) \) — internal investments; \(x_2(k) \) — external investments. Another structure that is used often is generalized bilinear model:

\[
\begin{align*}
y(k) &= a_0 + \sum_{i=1}^{p} a_i y(k-i) + \sum_{j=1}^{q} b_j v(k-j) \\
&+ \sum_{i=1}^{m} \sum_{j=1}^{s} c_{ij} y(k-i) v(k-j) + e(k)
\end{align*}
\]

where \(p, q, m \) and \(s \) are positive numbers characterizing model order. The model can also be represented in state space form where the states are presented in the form of a product of former innovations and vectors of random coefficients [12].
Some models of nonlinear processes result directly from economic theory and formally describe specific financial or economic processes. They can take into consideration possibilities for development optimization methods for systems under study using appropriate cost functional or utility function. One of possible model structures is as follows:

\[y(k) = \min (\beta^T w(k), \theta^T w(k)) + \varepsilon(k) \] (2)

where estimate of dependent variable \(y(k) \) is determined as a smaller one of two possible values computed via alternative functions: \(\beta^T w(k) \) or \(\theta^T w(k) \). If “\(\min \)” in the model (2) is replaced by another variable, say \(z(k-d) \), that could be an element of vector \(w(k) \), though not equal one, then we get so called switching model:

\[y(k) = \beta^T w(k) + \theta^T w(k) F(z(k-d)) + \varepsilon(k) \]

where

\[F(z(k-d)) = \begin{cases} 0 & \text{if } z(k-d) \leq c; \\ 1 & \text{if } z(k-d) > c; \end{cases} \]

c is some threshold value that is used for switching from one model to another; \(d = 0, 1, 2, ... \) is discrete delay time.

A scalar version of the model is called threshold autoregression with two modes. It can be generalized to the set of possible functioning modes using nonlinear function of the type:

\[F(z(k-d)) = \frac{1}{1 + \exp[-\gamma(z(k-d) - c)]}, \quad \gamma > 0. \]

This is a model of logistic smooth transition autoregression (LSTR). The function \(F \) can also be used in the form of probability density function (PDF). In a scalar case the model will correspond to the exponential smooth transition autoregressive (ESTAR) model.

A convenient approach to modeling nonlinear processes is based on the models that contain linear and nonlinear components, or flexible models:

\[y(k) = \beta^T z(k) + \sum_{i=1}^{p} \alpha_i \phi_i(0)^T z(k) + \varepsilon(k) \] (3)

where \(z(k) \) is a vector of time delayed values for dependent variable \(y(k) \), as well as former and current values of the explaining variables vector \(x(k) \) plus shift constant. The first component of the model is linear, and \(\phi_i(x) \) is a set of functions that could include the following components:

- power function \(\phi_1(x) = x^i \), where variable \(x \) can be delayed in time value of \(y \) or some other variable;
- trigonometric function \(\phi_2(x) = \sin x \) or \(\phi_3(x) = \cos x \);
- equation (3) can be expanded with quadratic function \(z^T(k) A z(k) \), that will result in a flexible functional form;
- \(\phi_4(x) = \phi(x), \forall i \), where \(\phi(x) \) is a link function, for example appropriate PDF or logistic function of the following type:

\[\phi(x) = \frac{1}{1 + \exp(-x)}; \]

- \(\phi(x) \) can also be represented by appropriately selected nonparametric function.

Some general class of nonlinear models is also given by the form:

\[y(k) = \sum_{j=1}^{p} \phi_j (x(k-1)) y(k - j) + \mu (x(k - 1)) + \varepsilon(k) \] (4)

where \(y(k) \) is \([n \times 1]\) stochastic vector of dependent variables; \(x(k) = [y(k), y(k - 1), ..., y(k - n + 1)] \) is a vector of state variables dynamics of which is described by the state space model:

\[x(k) = h(x(k-1)) + F(x(k-1))x(k-1) + v(k). \] (5)

Equation (4) can also include the moving average members. It means that in this case to describe selected process we use two models simultaneously what may result in some difficulties with the model structure estimation. Equation (5) is a state space model that can be supplemented with the measurement equation. The elements of matrix \(F() \) could be linear functions or low order polynomials. The models (4), (5) can also contain the members that reflect availability of long memory what takes place very often when we study ecological, financial and economic processes.

In the process of constructing forecasting models we build several candidates and select the best one of them with a set of model adequacy statistics. The following techniques are used to fight structural uncertainties: improvement of model order (for example, NAR\((p) \) or NARMAX\((p, q) \)) by applying adaptive approach in a loop to modeling with automatic search for the “best” structure using complex statistical adequacy criteria mentioned above; adaptive estimation of delay time (lag) and the type of data probability distribution with its parameters; describing
detected process nonlinearities with alternative analytical forms with subsequent estimation of model adequacy and quality of the forecasts generated.

A wide subclass of nonlinear models is created today by the models describing dynamics of conditional variance for heteroscedastic process (HSP). HSP are nonlinear by definition as far as variance description is based on quadratic variables and functions. Popularity of variance forecasts is explained by their wide possibilities for practical applications such as follows: volatility is a parameter used in stock trading systems for supporting decisions regarding operations with various type of stocks; variance characterizes evolution of prices for many market goods; there is no engineering or medical diagnostic system that does not use variance as a parameter incorporated in decision making rules. The simplest mathematical model of conditional variance is autoregressive conditionally heteroscedastic (ARCH) equation of the form:

$$E_k[\varepsilon^2(k + 1)] = \alpha_0 + \alpha_1 \varepsilon^2(k - 1) + \alpha_2 \varepsilon^2(k - 2) + ... + \alpha_q \varepsilon^2(k - q)$$ \hspace{1cm} (6)

where $\varepsilon(k)$ is a stochastic part of equation describing HSP under study. It can be estimated by hiring low order autoregressive equation (such as AR(1) or AR(2)) for description of goal variable $y(x)$ in LHS; $E_k()$ is a symbol of conditional mathematical expectation computed for specific moment of time k. Usually equation (6) does not allow compute acceptable results of short term variance forecasting.

The structure of equation (6) was improved by introducing another variable into right hand side (RHS) as follows:

$$h_3(k) = \alpha_0 + \sum_{i=1}^{q} \alpha_i \varepsilon^2(k - i) + \sum_{i=1}^{p} \beta_i h_3(k - i)$$ \hspace{1cm} (7)

where sample conditional variance $h_3(k)$ is computed as follows:

$$h_3(k) = \frac{1}{w - 1} \sum_{i=k - \frac{w - 1}{2}}^{k + \frac{w - 1}{2}} [y(i) - \bar{y}_s(i)]^2, \ k = 2, 3, ..., N,$$

where $\bar{y}_s(k)$ is sample mean computed for each window w; w is a size of moving window for computing conditional variance which is usually selected as an odd number for convenience. Equation (7) is generalized ARCH (GARCH) which is usually much more efficient for describing and short term forecasting conditional variance (and volatility).

Very good results of short term volatility forecasting can be achieved with the exponential GARCH (EGARCH) model that has the following structure:

$$\log[h(k)] = \alpha_0 + \sum_{i=1}^{p} \alpha_i \frac{\varepsilon(k - i)}{\sqrt{h(k - i)}}$$

$$+ \sum_{i=1}^{p} \beta_i \frac{\varepsilon(k - i)}{\sqrt{h(k - i)}} + \sum_{i=1}^{q} \gamma_i \log[h(k - i)] + \nu(k).$$

This equation contains so called “standard” part that takes into account the innovations $|\varepsilon(k)|$, and another part that takes into consideration sign of the innovation. The values of $\varepsilon(k)$ are normalized by volatility what leads to reduction of possible high values, and the logarithm function is applied for smoothing the volatility. Definitely there exists a wider set of conditional variance models that need separate considerations.

Processing Some Types of Stochastic Uncertainties

Performing modeling of economic, financial and ecological processes usually we don’t have enough information about statistical characteristics (covariance matrices) of measurement errors and stochastic external disturbances (so called state noise). To minimize influence of these uncertainties on data quality digital and optimal filtering techniques are applied. Procedures for digital filters development are well known, and we only have to determine pass-bands and stop-bands. Optimal filters provide for a possibility of simultaneous estimation of system states and the covariance matrices though they require mathematical models in state space form. Generally optimal Kalman filter can solve the following problems: generating optimal states, estimation of non-measurable state vector components, estimation of statistical parameters for the state and measurement noise, short-term forecasting of state variables. Here we hire nonlinear version of optimal filter that uses approximate (after linearization) state space model of processes and systems under study. System state estimation via optimal filter is performed on the basis of discrete form system model represented by two equations in state space as follows:

$$x(k + 1) = \Phi(k + 1, k)x(k)$$

$$+ \Gamma(k + 1)u(k) + w(k),$$ \hspace{1cm} (8)

$$z(k + 1) = H(k + 1)x(k + 1) + v(k + 1)$$ \hspace{1cm} (9)

where $x(k)$ is n-dimensional vector of system states; $k = 0, 1, 2, ...$ is discrete time; $u(k)$ is m-dimen-
sional vector of control variables; \(w(k) \) is \(n \)-di-

mensional vector of external random disturbances; \(\Phi(k, k) \)
is \([n \times n]\) matrix of system dynamics; \(\Gamma(k + 1) \) is \([n \times m]\)
matrix of control coefficients. The double argument
\((k, k - 1)\) means that the variable or parameter is
computed at the moment \(k \), but its value is based
on the previous data processing procedure including
moment \((k - 1)\). Discrete time \(k \) and continuous time
time \(t \) are linked via data sampling time \(T_s: t = kT_s \).
The classic problem statement supposes that vector sequen-
ces of external disturbances \(w(k) \) is zero mean white
Gaussian noise with covariance matrix \(Q \). In the
measurement equation (7) \(z(k) \) is a vector of measured
output variables; \(H(k + 1) \) is \([r \times n]\) observation matrix;
\(v(k) \) is \(r \)-dimensional vector of measurement er-
ners (noise) with covariance matrix \(R \). The filter is con-
structed to compute optimal state vector \(x(k) \), in
conditions of influence of random external system dis-
turbances and measurement noise.

Here uncertainty arises due to unknown co-
variance matrices \(Q \) and \(R \). The problem is solved
with adaptive filter constructing that provides a possi-
ibility for computing the estimates of \(Q \) and \(R \) simul-
taneously with state vector \(x \). Another possibility is
in constructing separate algorithm for computing the
values of the covariance matrices mentioned. A con-
venient statistical data based algorithm for computing
the covariance matrices can be found for example
in [17]. The algorithm was successfully applied to es-
imating the values of covariance matrices in many prac-
tical applications. The experiments showed that the
values of estimates become stationary after about 20—25
of time sampling periods in a scalar case, though this
figure may increase substantially with the growth of
dimensionality of the model (8), (9).

In a case of hiring nonlinear models for the pro-
cesses description a discrete nonlinear transformed ver-
sion of Kalman filter was applied that also uses fund-
damental matrix \(\Lambda(\cdot) \) of continuous time model [18].
Here the sequence of estimates \(\hat{z}(k), x(k) \), and state
transition matrix are computed as follows:

\[
\hat{x}(k + 1) = \hat{z}(k) + \Lambda(\hat{z}(k)) \hat{z}(k) T_s + \sqrt{T_s} \Phi(k + 1) u(k + 1),
\]

\[
\Phi(k + 1, k) = \left[I - \frac{T_s}{2} \Lambda(x(k + 1)) \right]^{-1} \left[I + \frac{T_s}{2} \Lambda(\hat{z}(k)) \right],
\]

\[
\hat{z}(k + 1) = \Phi(k + 1, k) \hat{z}(k) + \sqrt{T_s} \Phi(k + 1, k) B(k + 1) u(k + 1)
\]

where \(\Lambda(\cdot) \) is fundamental matrix for continuous time
model; \(\hat{z}(k) \) is approximating estimate for \(x(k) \). The
prior covariance matrix of state estimates errors and
optimal matrix coefficient are computed in the fol-
lowing way:

\[
\Gamma(k) = \sqrt{T_s} \Psi(k + 1, k) B(k + 1),
\]

\[
P(k + 1, k) = \Psi(k + 1, k) \Psi^T(k + 1, k) + \Gamma(k) Q(k) \Gamma^T(k),
\]

\[
K(k + 1) = P(k + 1, k) H^T [HP(k + 1, k) H^T + R]^{-1},
\]

\[
\hat{z}(k + 1, k + 1) = \hat{z}(k + 1) + K(k + 1) [z(k + 1) - H \hat{z}(k + 1, k)].
\]

Among other instruments for processing uncer-
ainties are fuzzy sets and logic, static and dynamic
Bayesian networks, appropriate types of conditional
probability distributions etc. Bayesian networks rep-
resent powerful probabilistic tools for modeling pro-
cesses and systems with hiring statistical data, expert
estimates, information on PDFs for continuous and
discrete variables. They can cope successfully with pro-
babilistic and amplitude type uncertainties. Some un-
certainties such as missing observations, extreme va-
ues and high level jumps of stochastic origin are proc-
essed with appropriately selected known statistical
procedures. Existing data imputation procedures help
to complete the sets of data collected. For example,
very often missing measurements of time series could
be generated with correctly selected distributions or in
the form of short term forecasts. Processing of jumps
and extreme values helps with adjusting data non-sta-
tionarity and to estimate the probability distribution
functions for the stochastic processes under study.

Results and Discussion

The developed procedure for linear and nonli-
near model constructing using statistical data inclu-
des the steps given below.

1. Preliminary processing of data and expert es-

timates with application of data quality criteria such as

missing values counters, parameters of information

content (computing of variance, and number of deri-

vatives for approximating polynomials), power of sam-

ples. Filtering of data and imputation of missing va-

lues where necessary; estimation of non-measurable

components.

2. Application of statistical tests aiming to dis-

covering nonlinearity and nonstationarity; correlation
data analysis is giving the grounds for estimation of

model structure.

3. Estimation of candidate models structure

and their parameters. To reduce the influence of pos-
sible parametric uncertainties three parameter estimation techniques are applied: LS (NLS), maximum likelihood (ML), and Markov chain Monte Carlo (MCMC) procedures.

4. Application of model adequacy statistics and selection of the “best” models. If model quality is not acceptable we return to the step 2 to get more information regarding the model structure and repeat the procedures of structure and parameter estimation.

5. The model(s) selected is used for computing forecasts that are analyzed with another set of quality criteria. Among them are mean absolute percentage error and Theil coefficient.

6. The final step is practical application of the model constructed. If the model is not satisfactory for practical usage the process of model constructing is repeated with extra statistical data.

Very often uncertainties of model parameter estimates such as bias and inconsistency result from low informative data, or data do not correspond to selected type of distribution, what is required for correct application of parameter estimation method. Such situation may also take place in a case of multicollinearity of independent variables and substantial influence of process nonlinearity that for some reason has not been taken into account when model structure was estimated. When power (size) of data sample is not satisfactory for model construction it can be expanded by special techniques, or Monte Carlo simulation is hired, or special model constructing techniques, such as GMDH, are applied. GMDH produces very often results of acceptable quality with short samples. If data does not correspond to normal distribution, then ML technique could be used or appropriate MCMC procedures [10]. The last techniques can be applied with quite acceptable computational expenses when the number of parameters is not large.

Example 1. Consider the problem of modeling return $y(k)$ for a selected stock on the basis of monthly data including 300 observations. According to partial autocorrelation function computed the model of the process should include lags 1–3. Thus the bilinear model selected may look as follows:

$$y(k) = \mu + a_1 y(k-1) + a_2 y(k-2) + a_3 y(k-3) + (1 + \beta_1 y(k-1) + \beta_2 y(k-2) + \beta_3 y(k-3)) \cdot \varepsilon(k)$$

where $\varepsilon(k)$ is moving average process; it was suggested that $\{\varepsilon(k)\} \sim N(0, 1)$. The model parameters were estimated with conditional maximum likelihood:

$$y(k) = 0.0117 + 0.173 y(k-1) + 0.115 y(k-2) - 0.089 y(k-3) + 0.077 \cdot (1.0 + 0.383 \varepsilon(k-1)) + 0.103 \varepsilon(k-2) - 0.551 \varepsilon(k-3)) \cdot \varepsilon(k).$$

Adequacy of the model is rather high: $R^2 = 0.89$, $DW = 1.92$, with mean absolute percentage error for one-step-ahead prediction on test sample: $MAPE = 5.2\%$. All parameter estimates are statistically significant at the confidence level of 5\%.

The model for random process $\varepsilon(k)$ from the last equation is as follows:

$$y(k) - 0.0117 - 0.173 y(k-1)$$

$$\varepsilon(k) = \frac{-0.115 y(k-2) + 0.089 y(k-3)}{0.077 \cdot (1.0 + 0.383 \varepsilon(k-1)) + 0.103 \varepsilon(k-2) - 0.551 \varepsilon(k-3))}.$$
Threshold value of probability for logistic regression was selected 0.29. The error values were 21 % (first type), and 63 % (second type); the number of correctly forecasted directions of price evolution was 66.13 %.

Using the classification tree (CHAID algorithm) for the maximum prices and threshold value 0.25 we got the first type error 27 %, and the second type error of about 50 %. The number of correctly forecasted directions of the process development was about 68.95 %.

For the minimum prices the following results were achieved: threshold value 0.31 we got the first type error 26 %, and the second type error of about 62 %. The number of correctly forecasted directions of the process development was about 64.66 %.

To improve the forecasts quality logistic regression model and decision tree were extended with the price forecasts, computed with regression models for $y(k)$. The model for maximum price looks as follows:

$$g_{max2}(x_l) = \frac{e^{x_l(k)}}{1 + e^{x_l(k)}}$$

$$x_l(k) = -1.267 + 1.071 \cdot S1(k) - 0.384 \cdot S2(k) + 0.142 \cdot S3(k) + 0.206 \cdot P(k) + 0.305 \cdot R1(k) - 0.181 \cdot R2(k) - 0.269 \cdot R3(k) + 1.075 \cdot y(k)$$

where $y(k)$ is regression model output that accepts the value of “1” when the price is growing, and “0” when the price is decreasing. Using the threshold value of 0.46 we got the first type error 28 %, and the second type error of about 36 %. The relative number of correctly forecasted direction of price movement was about 74.19 %. Using the classification tree (CHAID) with the threshold value 0.25, we got the first type error 28 %, and the second type error of about 48 %. The relative number of correctly forecasted direction of price movement was about 69.48 %.

To forecast minimum price the following model was constructed:

$$g_{min2}(x_l) = \frac{e^{x_l(k)}}{1 + e^{x_l(k)}}$$

$$x_l(k) = -0.124 + 0.364 \cdot S1(k) - 0.642 \cdot S2(k) - 0.55 \cdot S3(k) - 0.549 \cdot P(k) - 0.282 \cdot R1(k) + 0.599 \cdot R2(k) - 0.451 \cdot R3(k) + 2.974 \cdot y(k)$$

Using the threshold value of 0.47 we got the first type error 46 %, and the second type error of about 17 %. The relative number of correctly forecasted direction of price movement was about 74.77 %. Using the classification tree (CHAID) with the threshold value 0.47, we got the first type error 50 %, and the second type error of about 13 %. The relative number of correctly forecasted direction of price movement was about 74.68 %. The results of maximum and minimum price direction forecasting are given in Tables 1 and 2 respectively.

<table>
<thead>
<tr>
<th>Table 1. Results of forecasting maximum price direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model type</td>
</tr>
<tr>
<td>Regression model with indicators</td>
</tr>
<tr>
<td>Logistic regression with indicators</td>
</tr>
<tr>
<td>Classification tree with indicators</td>
</tr>
<tr>
<td>Logistic regression with indicators + forecasts via regression model</td>
</tr>
<tr>
<td>Classification tree with indicators + forecasts via regression model</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2. Results of forecasting maximum price direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model type</td>
</tr>
<tr>
<td>Regression model with indicators</td>
</tr>
<tr>
<td>Logistic regression with indicators</td>
</tr>
<tr>
<td>Classification tree with indicators</td>
</tr>
<tr>
<td>Logistic regression with indicators + forecasts via regression model</td>
</tr>
<tr>
<td>Classification tree with indicators + forecasts via regression model</td>
</tr>
</tbody>
</table>

Thus, in both cases the best results were achieved with the logistic regression model that uses forecasts computed by linear regression. The statistical characteristics of forecasts quality used indicate high quality of the forecasts and the possibility for their practical applications in trading rules.
Conclusions

The general methodology was proposed for developing automatized software system for mathematical modeling and forecasting nonlinear nonstationary economic and financial processes using statistical data. The software system development is based on the following system analysis principles: hierarchical system architecture, taking into consideration possible probabilistic and statistical uncertainties, availability of model adaptation features, generating of multiple decision alternatives (multiple models and forecasts), and tracking of computational processes at all the stages of data processing and model constructing with appropriate sets of statistical quality criteria. As instrumentation for fighting possible uncertainties the following techniques were used: optimal Kalman filter, missing data imputation techniques, multiple methods for model parameter estimation, and probabilistic Bayesian programming approach. A short review of models for nonlinear nonstationary process was presented which shows rapidly growing popularity of the model structures considered.

The examples of the software system application show that it can be used successfully for solving practical problems of mathematical model building and forecasts estimation. The system proposed could be used for support of decision making in multiple areas of human activities including strategy development for the state government, various financial institutions, industrial and agricultural enterprises, investment companies etc. Further extension of the system functions is planned with new forecasting techniques based on probabilistic models, neural networks, and fuzzy sets and rules.

References

П.І. Бідюк, С. Овермайєр, Т.І. Просякіна-Жарова, О.М. Терентьєв

МЕТОДИКА МОДЕЛЮВАННЯ І ПРОГНОЗУВАННЯ НЕСТАЦІОНАРНИХ ПРОЦЕСІВ У ФІНАНСАХ

Проблематика. Більшість моделей фінансових та економічних процесів вирізняються значною обчислювальною складністю, а побудова прогнозів прийнятної якості для цих процесів на потрібний часовий горизонт – великою трудомісткістю. Тому розробка і впровадження ефективних інструментів прогнозного моделювання фінансових та економічних процесів є однією з актуальних і
пракччно значимых задач. У роботі розглядається питання моделювання та прогнозування нелінійних нестаціонарних процесів у макроекономіці та фінансах із використанням методики, в основу якої покладені принципи системного аналізу, також як існуючи моделювання, врахування невизначеності, оптимізація характеристик за допомогою комплексних критеріїв, а також структурно-параметрична адаптація. Застосування запропонованої методики док змогу покращити якість прогнозування за рахунок виявлення особливостей досліджуваного процесу й адаптації моделі до нових даних тощо.

Мета дослідження. Розроблення методики для прогнозного моделювання нестаціонарних процесів у фінансах і макроекономіці із використанням статистичних даних та її реалізації у відповідній комп’ютерній системі.

Методика моделювання. Методика базується на технологіях попередньої обробки статистичних даних, спрямованих на усунення можливих невизначеностей, застосовані кореляційного аналізу для оцінювання структури моделі та вибору метод і критеріїв моделювання. Застосування запропонованої методики дає змогу покращити якість прогнозування за рахунок видалення особливостей досліджуваного процесу й адаптації моделі до нових даних.

Методика прогнозування. Висока якість прогнозування досягається за рахунок використання ряду критеріїв адекватності моделі, таких як оцінка прогнозу і зруйнованості моделі, що дозволяє ефективно оцінювати результати, здійснені на основі вибраних даних.

Результати дослідження. Для виборані фінансових і макроекономічних процесів було побудовано відповідні моделі. Висока якість прогнозування досягається за рахунок використання ряду критеріїв адекватності моделі, таких як оцінка прогнозу і зруйнованості моделі, що дозволяє ефективно оцінювати результати, здійснені на основі вибраних даних.

Висновки. Запропонована методика використана для прогнозного моделювання окремих макроекономічних та фінансових процесів України. Отримані результати свідчать про те, що її можна успішно використовувати для розв’язання практичних задач побудови моделей і прогнозів нелінійних нестаціонарних процесів в умовах невизначеності різних типів, які зазвичай доводиться розглядати під час моделювання та прогнозування, використовуючи статистичні дані.

Ключові слова: нелінійний нестаціонарний процес; невизначеності; математично моделювання; прогнозування; макроекономічні та фінансові процеси.

П.І. Бидюк, С. Овермейер, Т.І. Просянкина-Жарова, А.Н. Терентьев

МЕТОДІКА МОДЕЛЮВАННЯ ТА ПРОГНОЗИРОВАНИЯ НЕСТАЦІОНАРНИХ ПРОЦЕСІВ В ФІНАНСАХ

Проблематика. Більша частина моделей фінансових і економічних процесів відображає значну чи незначну адекватність. Проблема моделювання нелінійних нестаціонарних процесів в макроекономіці та фінансах випливає із використанням статистичних моделей. В роботі розглядаються взаємозв’язки моделей і прогнозування.

Методика моделювання. Метою розроблення моделей є використання статистичних моделей і прогнозування нелінійних нестаціонарних процесів в макроекономіці та фінансах.

Результати. Результати моделювання нелінійних нестаціонарних процесів в макроекономіці та фінансах випливають із використанням статистичних моделей.

Ключові слова: нелінійний нестаціонарний процес; невизначеності; математичне моделювання; прогнозування; макроекономічні та фінансові процеси.