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ESTIMATION OF ACCURACY AND RELIABILITY OF MODELS OF ¢-SUB-GAUSSIAN
STOCHASTIC PROCESSES IN ((T) SPACES

Background. At present, in the theory of stochastic process modeling a problem of assessment of reliability and accu-
racy of stochastic process model in C(7) space wasn’t studied for the case of inexplicit decomposition of process in
the form of a series with independent terms.

Objective. The goal is to study reliability and accuracy in C(7) of models of processes from Sub,(Q2) that cannot be
decomposed in a series with independent elements explicitly.

Methods. Using previous research in the field of modeling of stochastic processes, assumption is considered about
possibility of decomposition of a stochastic process in the series with independent elements that can be found using
approximations.

Results. Impact of approximation error of process decomposition in series with independent elements on reliability
and accuracy of modeling of stochastic process in C(7) is studied.

Conclusions. Theorems are proved that allow estimation of reliability and accuracy of a model in C(7) of a stochastic
process from Sub,(Q2) in the case when decomposition of this process in a series with independent elements can be
found only with some error, for example, using numerical approximations.
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Introduction

In the theory of stochastic processes, modeling
of stochastic processes is a vital part. This problem
has been a matter of active research in recent decades.
It has become an irreplaceable part of research, deve-
lopment and applications in many different fields.
As a result, to build the model of a stochastic pro-
cess and study its properties is the task of high im-
portance.

Much attention has been paid to the models of
stochastic processes from Subq)(Q) spaces, particu-

larly in [1, 2]. One of the most used spaces for mo-
del development of stochastic processes is C(7') spa-
ce, the space of functions, continuous on the inter-
val T. Models of stochastic processes in these spaces
are considered, for example, in [3] and [4]. The fol-
lowing representation of this stochastic process is
used [4] to build a stochastic process model with gi-
ven reliability and accuracy in any space:

X(0) = Sea(0).
k=0

Here, &, are random variables, a,(f) are func-

tions, and this series has to be mean square conver-
gent in the space where we want to build the model
of this process.

: corresponding author: omoklyachuk@gmail.com

The model of the process itself is defined as the
sum of first N elements of the above series and is
usually denoted by Xy (¢) [4], i.e.

N
Xy (1) = Z&kak(t)- (D
k=0

One of the biggest problems of dealing with
such decompositions is that it is often impossible to
find functions a,(f) in an explicit way, and their ap-
proximations have to be used. Needless to say, errors
of these approximations will have the influence on the
reliability and accuracy of the developed model. This
problem has been previously considered in [5—S8].

Research objective

In this paper, we consider models of stochastic
processes in C(T) space when decomposition ele-
ments a,(f) cannot be found explicitly and prove

theorems that allow modeling of such stochastic pro-
cess taking into account errors of approximations
of a,(?).

Basic concept

Let (Q, F, P) be a standard probability space,
T be some parametric space.
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Definition 1 [9]. Function ¢(x) is called an Or-
licz N-function, if it is even convex continuous func-
tion and

00)=0, o(x)>0, x=0;
o(x)/x >0, x - 0;
¢(x)/x —> 0, X - o,

Assumption Q [10]. Let ¢(x) be an Orlicz N-

function and [im —= (p( )
x—0 X

The constant ¢ can be equal to +oo.
Definition 2. Random variable § is called ¢-
sub-Gaussian, if there exists such g >0, that for

all A € R inequality
E exp{A&} < exp{o(ar)},

holds true, where ¢ is N-function that satisfies as-
sumption Q.
Function (&) defined as

=c>0.

(&) = inf{a > 0: Fexp{\&} < exp{op(ar)},A € R}

is called the ¢@-sub-Gaussian standard of &.

A space of ¢-sub-Gaussian random variables
is usually denoted as Sub,(2). This space is Banach
space with the norm t(§) and E€ = 0.

Definition 3. Stochastic process X = {X(?), t € T}
is called ¢-sub-Gaussian, if random variables X(7)
for each ¢t € T are ¢-sub-Gaussian.

The next statement will be required for further
proofs.

Theorem 1 [10]. Let &,§,...,&, € Sub,(Q) be

independent random variables. If function ¢(x|"*),
x € R, is convex for s € (0,2], then

Ty (/;lék] < DreEr)

k=1

Let us make some assumptions. Let X = {X(¢),
t € B} be a continuous with probability 1 stochastic
process from Sub,(Q2) space (conditions for conti-
nuity can be found in [1]), let (B,p) be a compact,
and let X be separable in (B,p). Assume that continu-
ous monotone increasing function o = {c(h),h >0}
exists, o(h) - 0 when h — 0, and next inequality
holds true:
sup 1, (X(7) - X(s)) < o(h). 2)

p(t,5)<h

Besides, let B> 0 be the following number:

B= c(mf sup p(z, s)j

teB

Definition 4. Minimal number of closed sphe-
res with the radius u that can cover (B,p) is called
metric massiveness Ng(u).

Under these assumptions, next modification of
the theorem from [1, p. 61] holds true.

Theorem 2. Let stochastic process X = {X(7),
t € B} belong Sub(P(Q) space, (B,p) — be the com-
pact, and let X be separable in (B,p). Assume that

condition (2) holds true for the process X, r = {r(u):
u > 1} is the continuous function such that r(u) > 0

for u > 1, and function s(¢) = r(exp{t}), ¢ > 0, is con-
vex. Then, if

[PV (0D (u)))du < oo,

stochastic process X(¢) is bounded with probability 1,
and for all pe(0,1) and x >0 next inequalities

are true:

P{ sup X(t) > x} < Z,(p,B, x),
1(0,T)

P{ inf X(t) < —X} < Zr(pa B,X),
te(0,T)

P{sup | X(®)| > x} <2Z,(p,B,x),
te(0,7)

Z (p,B,x)—mfexp{e (s p)+p(p[l7iﬁ j_kx}

r ”[Bp [r(N (o <-‘><u>>>duj,

where

0,(A, p) —sup((l P)o (Y(u)kj],

ueB
Y(u) = 1,(X (u)).

This theorem is very general, so let us consi-
der cases where function ¢(7) is given particularly.

Theorem 3. Let stochastic process Let X = {X(7),
1 € B} belong to Sub, (), (B,p) — be the compact

G
and let X be separable on (B,p). Let o(r) :%,

¢ >2,¢t>1, and let process X satisfy the conditions
of the previous theorem. Then the process X(¢) is
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bounded with probability 1, and for all p € (0,1) next
inequalities hold true:

P{sup X(#) > x} < Z, (p,B,x),
1(0,T) !

P{ inf X(t) < —X} < Zr (pa Bs .X,'),
te(0,T) 1

P{sup |[X(#)| > x} <2Z, (p,B,x),
1e(0,T) 1

¢

(1-9)(x(1 - p))©"!
1

-1

Z,(p,B,x) = exp
C(v*(1- p) + pB°)
1

e [B_pjfpﬁ(NB(c(l)(u)))duJ,

v*(1-p) + pp°
(1-pv~!
where v = min{B,y}, y¢ = sup,,. BT%(X (u)).
Proof. Let
(1-p)<yr and (1-p)<PBA. 3)

Consider the power of the exponent in the for-
mula of Zr1 (p,x,B) from the previous theorem us-

X >

ing o(z) and 6,(2, p) provided in the current theo-

rem. Then
sup [(1-p)o [M] +po [ﬁ] - Ax
ue(0,T) I-p 1-p
~ yC(u)y\‘C KCBQ .
) igg[C(l—p)ClJ+pC(l—P)c *

Jc [ supye@)(1 - p) + pp°
=2 | uB —AX. 4
g (1-p)*

If y* := sup,,_z"(u) = sup,_gto(X (u)), formula (4)

reaches its minimum when

x:( x(1- p)* Jc—l
y(1l-p)+pp)

and minimal value of formula (4) is equal to

<
(-9 - pp=" '

ne
L(v*(1- p) + pp°)=™

Besides, if A minimizes (4), inequalities (3) hold
true, or
1= p)+ pp°
(1-pp=!

where v =min{B,y}. o

Models of stochastic processes

Let us define model of the stochastic process
as it is given in (1).

Definition 5. Stochastic process X,(7) = {Xy(?),
te T} is called the model of stochastic process
X={X@®),teT}, if

X() = 3 tea (o)
k=0
and

N
Xy () =D& a ().
=0

Definition 6. The model X, (f) approximates
the process X(7) with given reliability 1 —v and accu-
racy 8§ in C(B) space, if

P{sup |[Ay ()| > 8} < v,
teT

where
Ay (1) = X(1) = Xy (0).
Assume that continuous monotone increasing
function oy ={oy(h),h >0} exists, op(h) > 0,
h — 0, and let the next inequality holds true:

sup 1,(Xn (1) — Xy (s)) <oy(h). ®)

p(t,5)<h

Next two statements allow estimation of reli-
ability and accuracy of a model of the stochastic
processes in C(T') space for two different classes of
function ¢(?).

Let us consider two classes of functions. Let
denote two classes of functions [9]:

¢
G = {‘P(’)|(P(t) I%,C >2.t>1 },

¢
Gy = {(p(t)I(p(t) =%>1 <f<2 }

Theorem 4. Let stochastic process Xy(7) = {Xy (?),
t e T} belong to Sub,(Q) space, (B,p) — be the
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compact and let X be separable on (B,p). Let ¢(7)
e (|, and let the process X satisfy the conditions of
theorem 2. Then, the model X () approximates pro-
cess X(¢r) with the given reliability 1-v and accu-
racy & in C(B) space, if

<
G-I - p)!

1 ,.1(71)
£ (1= p) + ppo)S!

v<2exps—

. (é J f”rl(NBw(N“(u)))du],
J 1= p)+ pp°

5
(1- py~!

where v =min{B,yy}, y%v = supuE[O’T]rg(A N (@)).
Proof. This theorem is the direct corollary of
theorem 3. o
Theorem 5. Let stochastic process Xy(f) = {X\(?),
te T} belong Sub,(Q) space, let (B,p) be the com-

pact and let X be separable on (B,p). Let ¢(?)

¢
:%, 1< <2, and let the process X satisfy the

conditions of the theorem 2. Then, the model X,(¢)
approximates the process X(z) with given reliability
1-v and accuracy 6 in C(B) space, if

i
(G=DEA-pp-!

s
Sy (1= p)+ pB%)~™

(1)
v<2exps— K

. (Bip J f”rl<NB<c<N-”<u>>>duj,

where 7y = sup, o1 75 (Ay (U)).

Proof. Current theorem is the corollary of
theorem 3. In this case we do not need any restric-
tions on 6. O

Let us now consider the case, when we have
some specific function o(#) for condition (2), na-

mely o(h) = Ch®, C — some non-negative constant,
& < (0,1).

Theorem 6. Let stochastic process X = {X(¢),
¢
t € [0,7]} belong to Sub,,(2) space, o(f) = %, > 12,

t> 1. Let X be separable, and let it satisfy conditi-
on (2), where o(h) = Ch*, &  (0,1). Then, process
X(¢) is bounded with probability 1 and

P{sup X(#) >x} < Z, (x),
1(0,T) !

P{ inf X(t) <—x} < Z, (x),
te(0,T) 1

P{sup |X()| >x}<2Z, (x),
1e(0,T) !

where
Z, (%)
¢ n
= exp{~(x —7)>! (€ - Dxc! —
Lo (x =) + B!

2(ex)V®,

PO+ 1)?

YT+ D)+
+ &I/ D™ =)
295!

X >

b

when v = min{C(T/2)%,v}, v° = sup,, o re(X @)).
Proof. This theorem follows from theorem 3.
We can take function () =%, 0 <a <@ as . Un-

der the conditions of current theorem, the second
part of the function Z,1 (p,B,x) from theorem 3

can be transformed in the next way:

(1 _
0 ”(@ﬁ"r]w,}(a ”(u)»duj

_ 1 ¢pp T
<O — (k| ————+1 |du|.
! {BPJO 1[20(‘%) ] ]

Besides, metric massivity satisfies the inequality

NB(u)§21+1 on [0,7]. Because of u < Bp < B
u

= o(T/2), we have o P(u) < T/2 for such u. As the
result, 7/ 26"V > 1, and

_ 1 ¢ppr T
e (B_p K [_26(%) . ljduJ

o 1/a
1 ¢pp T
S[@L’ {G(‘”(u)j du}

Using the formula for o(«), we obtain
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1/a
a ao/e
LJ'BP }w du _ LJ‘BPT C du
B0 \ oD (u) pplo  uo/®
o 1/a

|1 TR Epp)
- Bp l-o/2

jl/a
Tcl/a?

B —aje)

When o - 0 we will have

Tcl/es Tcl/ze e
/= Vo > ami/e &
Bp) (- a/=) Bp)
Because of B = c(infc,7)sup,co.7)P(?;5))

= C(T/2)*, we have

Tcl/ae Ve 5 e 1/=
=€ T4
(Bp) p

As the result,

Z, (p;p,x) = exp ;
L(yo(1- p) + pp°)=!
The statement of the theorem is derived from

the last equality if we denote p =y/x. Moreover,

condition for x of the previous theorem takes the
form

i x
(1-Q)(x(1 - p)~” z(gj‘/ .

y(1=1/x) + (1/x)C(T/ 2)*

X > )
(1-1/xp*!
therefore
20.¢-1 2
Yy +1) +\/ VD
. + T/ - )
PA ’

where v =min{B,y}. O

Following corollaries provide reliability and ac-
curacy for models of stochastic processes in Sub,(Q),

when ¢ belongs to classes C; or Cj;.

Theorem 7. Let stochastic process X = {X(¢),
t € [0,7]} belong to Sub,(Q2) space, ¢(r) € C;. Let X
be separable and satisfy condition (2), where o(4)
= Ch®. Then, the model X v (#) approximates the pro-
cess X(¢) with given reliability 1-v and accuracy &
in C(0,T) space, if

i i
(ST
1

L5 B —vy) + Byt

v <2exps—

2(es)*,

when

RO D)2

yN(vC"+l)+\/ ’
5o + 45 (CHT/ D)™ - vR)
P

b

v =min{B, vy}, Y%v = sup”E[O’T]r(%(AN(u)) .

Proof. This theorem is the direct corollary of
theorem 6. o

Theorem 8. Let stochastic process X = {X(7),
t € [0,7]} belong to Sub(p(Q) space, ¢(f) € Cj;. Let X

be separable and let it satisfy condition (2), where (/)
= Ch”. Then, the model X, v () approximates the pro-
cess X(¢) with given reliability 1 — v and accuracy &
in C(0,T) space, if

1 4

-1 B -yy)S!
1

L5 B —vy) + Byt

YR = SUp,o.rfie(Ay (1)).

v <2expi— 2(68)1/ae ,

Proof. This statement is the corollary of theo-
rem 6. Here no restrictions on & are needed. o

Models of stochastic processes that allow rep-
resentation in series with independent elements

Assume that stochastic process Xy(z) = {Xy(?),
t e T} can be represented as

X(t) = Sa (1), )
k=1

where &, e Sub, (). Let §,(1) = la, (1) — a, (t)|, a (1)
be approximations of g, (7), and let o, be the same

as in definition 5. Let X, sum of the first N ele-

ments of this series, be the model of such process, as
it is provided in definition 5.

For given stochastic process, we can prove next
theorems.

Theorem 9. Let stochastic process Xy(7) = {Xy(?),
1 € T} belong to Sub,(Q) space, ¢(f) € G, let (B,p)

be a compact and let X be separable in (B,p). Assu-
me that process X satisfy conditions of theorem 2.



22 Haykosi sicti HTYY "KMI"

201774

Then, the model X, (#) approximates the process X(¢)
with given reliability 1-v and accuracy & in C(B)
space, if

S
(€ -1 - 1’))(;_]1 HD

(5 (1= p)+ ppo)=!

v<2expd—

x [é f f”mNB(c(N”(u)))du],

55 vy (1- p) + pp°
(1-py*!

where v = min{B,yy}, 15 = sup,czt5(Ay @),

k=N+1

N © ¢/2
¢ s[Zri(&k)suESi(u)Jr > ri(c‘,k)suga,%(u)J .
k=1 ue ue

Proof.
Y5 = sugrfp(A N (1))
= supt (zngk(U)"' z Eray (U)j
ueB k=N+1

. ¢
{ZT (ék)sup82(u)+ > 2(&k)supak(u)j -

ueB k=N+1 ueB

Last inequality follows from the properties of
function 1, and theorem I. o

Theorem 10. Let stochastic process Xy(f) = {X\(?),
t €T} belong to Sub, () space, o(7) € C; let (B,p)
be a compact and let X be separable in (B,p). Assu-
me that process X satisfies conditions of theorem 2.
Then, the model X, (#) approximates the process X(?)
with given reliability 1 — v and accuracy 6 in C(B)
space, if

&
v<2expl- (E-1)(s(1 P))C_l1 e
Syi (1= p) + pp°)~"
1
x (@ [ rl(NB<cN‘>(u)))du)

where v = min{B,y,},

=

¥ < D 1o(E)supdy (u) + Z C(&,{)supak(u)

k=1 ueB k=N+1 ueB

Proof.

i = supto(Ay (1))

ueB

= supt [ZékSk(uH Z ékak(u)J

ueB k=1 k=N+1

=

< D715 (&, )supdy (u) + Z C(ék)sumk(u)

k=1 ueB k=N+1 ueB

The last inequality follows from the properties

of function Ty and theorem 1. o

Let the process X be defined on [0,77], and let
it satisfy the next condition:

(C1) o(h) = Ch®, 8, (1) — 8,(s) < C,h®, a(t)
—a,(s)a, (t) - a,(s) < C,h®, where C,C,,C, are some
non-negative constants, & < (0,1). In that case we

can prove next theorems.

Theorem 11. Let stochastic process X = {X(?),
1 € [0,71} belong to Sub,(Q) space, ¢(7) € C;. Let X
be separable and assume that this process satisfies con-
ditions (2) and (C1). Then, the model X (¢#) appro-
ximates the process X (¢) with given reliability 1 — v
and accuracy 8 in C(0,7) space, if

s &
(C-1D3" B -yy)!

1
L (B —yn) +Boyy)!

v<2expi— 2(ed)/=,

when

)+ O )
Y

+ 4ENCHT/ )™ 7))
0> PA

V= min{Bs YN }’

b

¢/2
(E_,k) SUP ak(u)] .

uel0,7T]

s{zr (€0 sup 5 + >

uel0, k=N+1

Proof. This theorem follows from theorems 6
and 9. o

Theorem 12. Let stochastic process X = {X(?),
1 € [0,7]} belong to Sub,(Q) space, ¢(f) € Cj;. Let X

be separable and assume that this process satisfies con-
ditions (2) and (C1). Then, the model Xy () appro-
ximates the process X (#) with given reliability 1 — v
and accuracy & in C(0,7) space, if
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1 &
-1 -1
_(C_I)SQ (S_YN)? 2(@8)1/23,

LGB —y) + By

v <2exp

where

ximate stochastic processes in C(T) spaces are con-
sidered. The case is studied when representation of
a @-sub-Gaussian stochastic process in series can-
not be found explicitly and requires application of se-
ries’ elements approximations. Influence of the error

yC

ous theorem and theorem 10. o

of ¢-sub-Gaussian stochastic processes that appro-

10.

(1]
2]

(3]

(4]
[5]

(6]

(7]

N
< YE(E) sup L)+ ) o (&) sup ag(u).
k=1

of such approximations is studied for reliability and
o accuracy of a model of stochastic process in C(T)
space. Theorems that allow developing a model that
approximates @-sub-Gaussian stochastic process with
given reliability and accuracy in C(T) space in dif-
ferent cases are proved.

In our further study we plan to apply the theo-
ry of generating functions to the theorems proved in
current paper and study reliability and accuracy of
modeling of stochastic processes in C(7) space in this
case.

uel0,T] uel0,T]

k=N+1

Proof. This theorem follows from the previ-

Conclusions

In this paper, reliability and accuracy models
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O.M. Moknisiuyk

OLIHKA HALIMHOCTI TA TOYHOCTI MOOENEMN ¢-CYB-TAYCCOBUX BUMALKOBWX MPOLIECIB Y MPOCTOPAX C(T)

Mpo6nemaTtuka. Y Teopii MogentoBaHHA BUNAaAKOBUX NPOLECIB JOCI HE BUBYANuUCh BMNaaku nobyaosu mogenew npouecis y C(T),
eneMeHTU posknagy siKUX y BUMMSAi psigy 3 He3anexHUMn YrieHaMu HEMOXITMBO 3HANTW Y SIBHOMY BUINSiA.

MeTa gocnipkeHHs1. MeTol0 AOCMImKEHHS € BUBYEHHS HAZIMHOCTI Ta TOYHOCTI MOAeneil NpoLecis i3 NpocTopis Suby(Q), ski He
MOXYTb OYyTV po3knageHi B psg siBHo, y npoctopi C(T).

MeToauka peanisauii. Ha 6a3i nonepegHix gocnigxeHbs Teopii MogentoBaHHA BUNAAKOBMX MPOLIECIB i3 3a4aHMMK HagiNHICTIO Ta
TOYHICTIO PO3rNAAaETbCA NPUNYLLEHHSI NPO MOXIMBICTb PO3KNagy BUMAAKOBOIO MpoLecy B psig 3 eneMeHTaMu, 3HageHUMn 3 NeBHUM
HaBNMXKXEHHSIM.

Pe3ynbTaTtn gocnigxeHHsi. BuB4eHO BNnvB NOXMOKM HabnvkeHHs eneMeHTIB po3krazy BUNagkoBOro npouecy B psf i3 Hesanex-
HYMW YreHamu Ha HaginHICTb | ToYHiCTb NobyaoBu Mogeni Takoro npotecy B npoctopi C(T).

BucHoBku. [loBegeHo Teopemu, ki AaayTe MOXIMBICTb OLHIOBATW HAAIMHICTb | TOYHICTL NOBY40BM MoAerni BUNaaKoBOro npouecy B
npoctopi C(T) y Bunaaky, Konu eneMeHT! po3knagy Takoro npouecy B psf i3 He3aneXHUMM YrieHaMu MoXyTb OyTu 3HangeHi nuwe 3
NeBHO NOXUBKOI0, i3 3aCTOCyBaHHSAM, Hanpuknaz, Y1CnoBUX MeTOAIB.

KnroyvoBi cnoBa: Bunagkosi npouecy; ¢-cyb-layccosi npouecy; mogeni BUNaakoBUX NMPOLECIB; TOYHICTb | HAAiMHICTL Moaento-
BaHHS BUNagKOBMX NPOLECIB.

A.M. Moknsauyk

OLIEHKA HAIEXHOCTW M TOYHOCTUM MOMENEN ¢-CYB-TAYCCOBCKUX CIYYAMHbIX MPOLIEECCOB B MPO-
CTPAHCTBAX C(T)

MNpo6nemaTuka. B Teopun ModenmpoBaHus criydaiHblX NPOLECCOB Ha CETOAHSILUHWIA AeHb He WU3y4anuchb Criydan NocTPOeHUs
mogeneii npoueccoB B C(T), 3anemMeHTbl pasfioXeHWsl KOTOPbIX B BUAe psida C HE3aBUCUMbIMK YIIeHaMy HEBO3MOXHO HalT B SIBHOM
Buae.

Llenb uccnepoBanus. Llenbio nccnefoBaHus SBNSETCS U3yyeHUe Ha[eXHOCTU U TOYHOCTW MOAENeN NpoLeccoB U3 NpocTpaH-

cTBa Sub(Q), KoTopble He MOTyT BbITb NPeACTaBmneHsb! B BUAE psiaa ABHO, B npocTpaHcTee C(T).

MeToguka peanusaumm. Ha 6a3e npeabiayLimMx nccnegoBaHvin B TEOpUM MOAENUPOBAHUS ClyYanHbIX NPOLECCOB C 3a4aHHbIMU
Ha[eXXHOCTbIO M TOYHOCTBIO paccMaTpmMBaeTCs AOMYyLIEHWE O BO3MOXHOCTY PasfioXeHns CryyYalHoro npouecca B psf C dneMeHTamu,
HalAeHHbIMU C HEKOTOPbIM NPUBIIKEHNEM.

Pe3ynbTaTbl nccnepgoBaHus. /3ydyeHo BNMsiHWE MOrpeLLHOCTY NPUMBNVXKEHNS 3NIEMEHTOB pasnoXeHusl cryvaiiHoro npouecca B
PSA C HE3aBUCKMbIMU YIIEHAaMU Ha Ha@XKHOCTb U TOYHOCTb MOCTPOEHUS MOAENM Takoro npouecca B npoctpaHctee C(T).

BbiBoAbI. [Joka3aHbl TeOpeMbl, KOTOPble NMO3BONAT OLEHNBaTb HAAEXHOCTb U TOYHOCTb MOCTPOEHWUA MOAENMU CryvanHoro npo-
uecca B npoctpaHctBe C(T) B crnyyae, Korga aneMeHTbl Pas3noXeHns Takoro npouecca B psif C He3aBUCUMbIMW YreHaMn MoryT ObiTb
HangeHbl NWLLb C HEKOTOPON MOrPELLHOCTLIO, C MPUMEHEHWEM, HanpUMep, YACIEHHbIX METOA0B.

KnioueBble cnoBa: criyyaiiHble NpoLecchl; ¢-cy6-laycCoBCKME NMPOLIECChl; MOAENM CIyYalHbIX NMPOLIECCOB; TOYHOCTb U HadeX-
HOCTb MOAENUPOBaHUS ClyYaiHbIX NPOLECCOB.
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